КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Особенности напряженно-деформированного состояния тонкостенных конструкций покрытий.
Классическая теория расчета оболочек основана на двух гипотезах: линейный элемент, нормальный к срединной поверхности оболочки, остается прямым и нормальным к данной поверхности после деформации конструкции; напряжения на площадках, параллельных срединной поверхности, не учитываются. Применение этих гипотез приводит к расчетным дифференциальным уравнениям высокого порядка относительно неизвестных функций. Уравнения получают в частных производных по двум переменным координатам точек срединной поверхности. Поскольку расчет сложный, принимают дополнительные допущения. Например, оболочки положительной гауссовой кривизны рассчитывают по безмоментной теории, при расчете пологих оболочек криволинейные координаты точек срединной поверхности заменяют прямолинейными координатами проекций этих точек на плоскость основания и т.д. Теоретические и экспериментальные исследования свидетельствуют, что железобетонные пространственные конструкции могут работать под нагрузкой в упругом и упругопластическом состояниях. В общем случае в нормальных сечениях оболочек возникают нормальные силы Nx и Ny, сдвигающие силы Qxy и Qyх, изгибающие моменты М х и Му, поперечные силы Qx и Qy, а также крутящие моменты Тх и Ту. Все эти усилия относятся к единице длины сечения (рис. 2). Расчет оболочек начинают с состояния статических уравнений, т. е. уравнений равновесия. К ним добавляют геометрические уравнения, связывающие линейные и угловые деформации, а также кривизны срединной поверхности оболочек с их перемещениями. Связь между статическими и геометрическими уравнениями выражают физическими уравнениями, которые представляют собой обобщенный закон Гука для объемного напряженного состояния материалов. Наличие трещин в бетоне оценивают системой физических уравнений, основанных на теории Н. И. Карпенко. Статический расчет тонкостенных пространственных конструкций с учетом физической и геометрической нелинейности оболочки сложен, поэтому такой расчет оболочек производят с использованием численного моделирования на ЭВМ путем реализации метода конечных элементов и других численных методов.
Усилия, действующие в тонкой оболочке
Дата добавления: 2014-01-06; Просмотров: 1128; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |