КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Главные напряжения
Рассмотрим общий случай воздействия на элемент тела напряжений. Для этого сложим все 3 формулы и получим:
Эти формулы подобны формулам для осевых и центробежных моментов инерции для повернутых осей. Поэтому аналогично вводятся и понятия главных напряжений и главных площадок. Если вычислить для разных углов, то можно найти максимальное и минимальное . Эти напряжения называются главными. Обозначается: Главные площадки – это сечения, на которых экстремальны. Угол , который определяет положение главных площадок, получаем по теореме Ферма: при должно быть Отсюда находим . Аналогично теории геометрических характеристик можно видеть, что на этих новых площадках касательных напряжений не будет, т.е. . Следствие: Всегда можно найти в теле такое положение малого элемента, в котором он только растягивается или сжимается, причем эти напряжения будут экстремальными. Примечание: согласно свойствам , если взять угол , то условие снова удовлетворится. Таким образом, существуют 2 главные площадки под углами и .
Вычисление В некотором теле найдем главные площадки для малого элемента.
Рис.11.7 Рис.11.8 Оси, ортогональные главным площадкам, обозначим . На главных площадках Рассмотрим площадку под углом . Используя формулу для при получим:
Поскольку , то Таким образом, возникает на площадках, расположенных под углом к главной площадке Можно показать, что в случае, когда действуют лишь напряжения значения главных напряжений можно вычислять даже не зная положения главных площадок по формулам: Тогда: .
Дата добавления: 2014-01-07; Просмотров: 378; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |