КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Лекция 10. Рекурсивный алгоритм сжатия информации, понятие о методах кодирования подвижных изображений и речевых сигналов
.097887 -.278653.416700 -.490862.489771 -.413593.274008 -.092414 .191618 -.462282.461366 -.189409 -.193822.463187 -.460440.187195 .277992 -.490246.096324.416700 -.414486 -.100228.491013 -.274673 .353694 -.353131 -.354256.352567.354819 -.352001 -.355378.351435 .461978.191618 -.190882 -.461673 -.462282 -.192353.190145.461366 .490393.415818.277992.097887 -.097106 -.277329 -.415375 -.490246 DCT =.414818 -.097106 -.490246 -.278653.276667.490710.099448 -.414486 (3)
Итак, в результате применения к блоку изображения размером 8х8 пикселов дискретного косинусного преобразования получим двумерный спектр, также имеющий размер 8х8 отсчетов. Иными словами, 64 числа, представляющие отсчеты изображения, превратятся в 64 числа, представляющие отсчеты его ДКП-спектра. Напомним, что спектр сигнала – это величины коэффициентов, с которыми соответствующие спектральные составляющие входят в этот сигнал. Спектральные составляющие часто называют базисными функциями. Для 8х8 ДКП система базисных функций задается формулой , (4) а сами базисные функции выглядят подобно приведенным на рис. 3.
Самая низкочастотная базисная функция, соответствующая индексам (0,0), изображена в левом верхнем углу рисунка, самая высокочастотная – в нижнем правом. Дискретное косинусное преобразование вычисляется путем поэлементного перемножения и суммирования блоков изображения 8х8 пикселов с каждой из этих базисных функций. В результате, к примеру, компонента DCT-спектра с индексами (0,0) будет представлять собой просто сумму всех элементов блока изображения, то есть среднюю для блока яркость. Можно заметить, что чем ниже и правее в матрице DCT его компонента, тем более высокочастотным деталям изображения она соответствует. Для того, чтобы получить исходное изображение по его DCT-спектру (выполнить обратное преобразование), нужно теперь базисную функцию с индексами (0,0) умножить на спектральную компоненту с координатами (0,0), прибавить к результату произведение базисной функции (1,0) на спектральную компоненту (1,0) и т.д. В приведенной ниже табл. 3 видны числовые значения одного из блоков изображения и его ДКП-спектра: Таблица 3
Отметим очень интересную особенность полученного DCT-спектра: наибольшие его значения сосредоточены в левом верхнем углу табл. 3 (низкочастотные составляющие), правая же нижняя его часть (высокочастотные составляющие) заполнена относительно небольшими числами. Чисел этих, правда, столько же, как и в блоке изображения: 8х8 = 64, то есть пока никакого сжатия не произошло, и, если выполнить обратное преобразование, получим тот же самый блок изображения. Следующим этапом работы алгоритма JPEG является квантование (табл. 4). Видно, что очень большая доля DCT коэффициентов,- нулевые или имеет очень небольшие значения (1 - 2). Это высокие частоты, которые (обычно) могут быть безболезненно отброшены или, по крайней мере, округлены до ближайшего целого значения. Квантование заключается в делении каждого коэффициента DCT на некоторое число в соответствии с матрицей квантования. Эта матрица может быть фиксированной либо, для более качественного и эффективного сжатия, получена в результате анализа характера исходной картинки. Чем больше числа, на которые происходит деление, тем больше в результате деления будет нулевых значений, а значит, сильнее сжатие и заметнее потери. Таблица 4
Очевидно, что от выбора таблицы квантования будет в значительной степени зависеть как эффективность сжатия – число нулей в квантованном (округленном) спектре,– так и качество восстановленной картинки. Таким образом, мы округлили результат DCT и получили в большей или меньшей степени искаженный поблочный спектр изображения. Следующим этапом работы алгоритма JPEG является преобразование 8х8 матрицы DCT-спектра в линейную последовательность. Но делается это таким образом, чтобы сгруппировать по возможности вместе все большие значения и все нулевые значения спектра. Для этого нужно прочесть элементы матрицы коэффициентов DCT в порядке, изображенном на рис. 4, то есть зигзагообразно - из левого верхнего угла к правому нижнему. Эта процедура называется зигзаг-сканированием. В результате такого преобразования квадратная матрица 8х8 квантованных коэффициентов DCT превратится в линейную последовательность из 64 чисел, большая часть из которых – это идущие подряд нули. Известно, что такие потоки можно очень эффективно сжимать путем кодирования длин повторений. Именно так это и делается. На следующем, пятом этапе JPEG-кодирования получившиеся цепочки нулей подвергаются кодированию длин повторений. И, наконец, последним этапом работы алгоритма JPEG является кодирование получившейся последовательности каким-либо статистическим алгоритмом. Обычно используется арифметическое кодирование или алгоритм Хаффмена. В результате получается новая последовательность, размер которой существенно меньше размера массива исходных данных. Декодирование данных сжатых согласно алгоритму JPEG производится точно так же, как и кодирование, но все операции следуют в обратном порядке. После неразрушающей распаковки методом Хаффмена (или LZ, или арифметического кодирования) и расстановки линейной последовательности в блоки размером 8х8 чисел спектральные компоненты деквантуются с помощью сохраненных при кодировании таблиц квантования. Для этого распакованные 64 значения DCT умножаются на соответствующие числа из таблицы. После этого каждый блок подвергается обратному косинусному преобразованию, процедура которого совпадает с прямым и различается только знаками в матрице преобразования. Последовательность действий при декодировании и полученный результат иллюстрируются приведенной ниже табл. 5. Таблица 5
Видно, что восстановленные данные несколько отличаются от исходных. На рис. 5 приведено исходное изображение (слева), а также изображение, сжатое с использованием алгоритма JPEG в 10 раз (в центре) и в 45 раз (справа). Потеря качества в последнем случае вполне заметна, но и выигрыш по объему тоже очевиден.
Рис. 5 Итак, JPEG-сжатие состоит из следующих этапов: Ø Разбиение изображения на блоки размером 8х8 пикселов. Ø Применение к каждому из блоков дискретного косинусного преобразования. Ø Округление коэффициентов DCT в соответствии с заданной матрицей весовых коэффициентов. Ø Преобразование матрицы округленных коэффициентов DCT в линейную последовательность путем их зигзагообразного чтения. Ø Кодирование повторений для сокращения числа нулевых компнент. Ø Статистическое кодирование результата кодом Хаффмена или арифметическим кодом. Декодирование производится точно так же, но в обратном порядке.
Дата добавления: 2014-01-07; Просмотров: 624; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |