Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Гипербола. Вывод канонического уравнения. Асимптоты

 

Def. Гиперболой называют геометрическое место точек плоскости, разность расстояний от которых до двух фиксированных точек, называемых фокусами, есть величина постоянная (меньшая, чем расстояние между фокусами).

 

Пусть 2 с – расстояние между фокусами;

2 апостоянная величина (2 a < 2 c);

r1 – первое расстояние (левый фокальный радиус);

r2 – второе расстояние (правый фокальный радиус).

Очевидно, что c>0, a>0, r1>0, r2>0.

Тогда уравнение гиперболы (по определению):

, причем .

 

Получим уравнение гиперболы в д.п.с.к. X0Y.

Расположим ось так, чтобы фокусы F1 и F2 принадлежали ей, ось и начало координат 0 – являлось серединой отрезка [ F1;F2 ].

Тогда координаты фокусов – F1(-c;0), F2(c;0).

Пусть т. M(x;y) –«текущая» точка гиперболы.

 

 
 

 


 

По теореме Пифагора из прямоугольного Δ F1 MN:

.

Из прямоугольного Δ F2 MN:

.

Учитывая, что , получим , или

.

.

 

Note 1 Дома или на п/з (следуя методу решения п. 3.5) после замены , вывести   каноническое (простейшее) уравнение гиперболы.  

 

 

<== предыдущая лекция | следующая лекция ==>
Основные характеристики эллипса | Основные характеристики гиперболы
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 810; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.