КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Микрогаметогенез
Тычинка образуется из бугорка конуса нарастания цветоносного побега. Меристематический тычиночный бугорок вначале вполне однороден, но в дальнейшем его рост сопровождается дифференцированием. Опыление Апомиксис или развитие зародыша без оплодотворения Развитие зародыша Развитие эндосперма и перисперма Оплодотворение Мегагаметогенез Мегаспорогенез Микрогаметогенез Микроспорогенез и пыльцевые зерна Лекция 15. Спиральное и циклическое расположение частей цветка Олигомеризация частей цветка Если сравнить цветки, характерные для более примитивных семейств, с цветками более продвинутых в эволюционном отношении растений, то можно отметить, что происходит прогрессивное уменьшение всех частей цветка. Уменьшение частей цветка соответствует общему принципу эволюции - закону интеграции гомологов, согласно которому, число однородных частей или гомологов в процессе эволюции уменьшается. Это явление (уменьшение частей цветка) известно под названием олигомеризации. Олигомеризация является главным, но не единственным направлением эволюции. В некоторых случаях происходил противоположный процесс - полимеризация или увеличение частей цветка. Хорошим примером является семейство кактусовых. Примитивные типы цветка характеризуются еще сравнительно длинным цветоложем. В процессе эволюции цветоложе постепенно укорачивается и у наиболее продвинутых групп оно обычно очень короткое. В связи с укорочением цветоложа и сокращением длины междоузлий части цветка все больше сближаются. Это приводит к переходу первоначально спирального расположения частей цветка к круговому или циклическому. Циклические цветки встречаются гораздо чаще спиральных и характерны для всех сколько-нибудь продвинутых семейств.
Дифференцируются и микроспорангии, входящие в состав тычинки. Периферические клетки микроспорангиев остаются стерильными, в то время как внутренние клетки дают начало первичным спермагенным клеткам. Из периферических стерильных клеток образуется стенка микроспорангия. Эта первоначально однородная стенка со временем разделяется на три слоя:
внешний слой эндотеций, средний слой, самый внутренний выстилающий слой - тапетум.
Клетки эндотеция несут на своей внутренней стороне специальные подковообразные утолщения, способствующие вскрыванию зрелого пыльника. Назначение среднего слоя не совсем понятно. А вот внутренний слой тапетум (от лат. tapetum - покрывало) имеет большое значение. Он состоит из таблитчатых тонкостенных клеток с густой цитоплазмой. Обычно тапетум одноряден. В клетках тапетума происходит деление путем митоза, вследствие чего они становятся многоядерными. В дальнейшем ядра могут сливаться и образуются плотные полиплоидные ядра. Возникает полиплоидная выстилающая ткань. Тапетум физиологически чрезвычайно активная ткань: его клетки содержат ферменты, гормоны и питательный материал, используемый в процессах микроспорогенеза. Т.е. главная функция тапетума - обеспечение спорогенной ткани питательными веществами. Параллельно с дифференциацией клеток стенки микроспорангия происходят события, ведущие к формированию микроспор. Внутренность каждого пыльника занята первичной спорогенной тканью. Первичные спорогенные клетки делятся несколько раз обычным митотическим путем. В результате этих делений образуются материнские клетки микроспор (или микроспороцисты). Затем происходит редукционное деление (мейоз), при этом из каждой материнской клетки образуется тетрада микроспор. У многих растений при образовании микроспор клетки тапетума расслизняются, образуют амебоидную ткань и распределяются между клетками тетрад, способствуя их питанию. В большинстве случаев в дальнейшем тетрады распадаются и в гнезде находится беспорядочная масса пыльцы, состоящая из одиночных, самостоятельных клеток - микроспор. Правда, иногда тетрады не распадаются, а остаются соединенными между собой и слипаются вместе в общий пыльцевой ком, называемый поллиний. Также пыльцевые комки - поллинии характерны для орхидных. Итак, процесс микроспорогенеза заканчивается образованием микроспор. Зрелая пыльцевая клетка (микроспора) одноядерна и имеет сложную оболочку, которая называется спородермой. Она состоит из двух главных слоев - интины и экзины. Внутренний слой - экзина представляют собой утолщенную слоистую оболочку с различными скульптурными выростами в виде шипиков, бугорков и ямок. Основным веществом этой оболочки является углевод - спорополленин. Благодаря споролленину экзина характеризуется необычайной стойкостью: она не растворяется в кислотах, щелочах, выдерживает t0 до 3000С и сохраняется миллионы лет в геологических отложениях. Характер скульптурированности поверхности экзины является важным диагностическим признаком, позволяющим идентифицировать пыльцу разных видов. Размеры, форма и поверхность пыльцевых зерен настолько характерны, что по пыльце можно определять виды растений (споровопыльцевой анализ) палинология. В биологическом плане, эти неровности помогают пыльце удерживаться на рыльцах плодолистиков. Как правило, в экзине пыльцевого зерна имеются тонкие или даже перфорированные места. Эти места называются апертурами и имеют очень важное значение - они служат для выхода пыльцевой трубки. Интина представляет собой внутренний слой оболочки пыльцевого зерна. Она облегает его содержимое и служит материалом, образующим пыльцевую трубку. В ее составе преобладают пектиновые вещества. Понятно, что эта оболочка весьма нестойкая и легко разрушается. Вслед за микроспорогенезом здесь же в пыльцевых зернах протекает микрогаметогенез к рассмотрению которого мы сейчас и перейдем. Как я уже упоминал, цветковые характеризуются крайним упрощением гаметофитов, особенно мужского. Все развитие мужского гаметофита, включая образование мужских гамет, сводится лишь к двум митотическим делениям. Первое из этих делений происходит всегда под защитой оболочки микроспоры. Второе деление совершается либо в пыльцевом зерне, либо в пыльцевой трубке. В результате зрелые пыльцевые зерна бывают двухклеточными. При первом делении образуются две, как правило, неравные клетки - маленькая пристенная генеративнаяклетка и большая сильно вакуолизированная сифоногеннаяклетка. Генеративная клетка со временем погружается в цитоплазму сифоногенной клетки. Создается совершенно уникальная ситуация, когда одна клетка, помещается внутри другой. Однако дальнейшая судьба этих двух клеток глубоко различна. В результате вторичного деления из генеративной клетки образуется две безжгутиковые гаметы - спермии, а сифоногенная клетка дает начало пыльцевой трубке, по которой эти спермии передвигаются. Таким образом, мужской гаметофит цветковых достиг наивысшей степени упрощения; он лишен как проталлиальных клеток, так и антеридиев (половых органов) и состоит всего лишь из двух клеток, которые, в свою очередь, делясь, образуют очень упрощенные гаметы.
Дата добавления: 2014-01-06; Просмотров: 753; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |