![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Безінерційна ланка
ТИПОВІ ДИНАМІЧНІ ЛАНКИ БЕЗПЕРЕРВНИХ САУ ТА ЇХ ХАРАКТЕРИСТИКИ
Чим докладніше математична модель САК, тим вище порядок n її диференціального рівняння. Передавальні функції систем високого порядку (зазвичай n > 4) виявляються громіздкими і незручними для аналізу. Щоб вийти з цього положення, передавальну функцію представляють у вигляді перемноження простих співмножників, порядок яких не перевищує два. Такі співмножники називають типовими ланками.
Безінерційна (статична) ланка є найпростішою серед всіх типових ланок. Вона передає сигнал з входу на вихід миттєво, без спотворення його форми. У ланці може відбуватися тільки посилення або послаблення вхідного сигналу. Зв'язок між миттєвими значеннями вхідної величини x(t) і вихідної величини у(t) описується рівнянням алгебри: y(t) = kx(t). Передавальні властивості ланки визначаються лише одним параметром - коефіцієнтом передачі k. Перехідна функція Імпульсна перехідна функція
h(t) = k1(t) w(t) = kd(t)
Рівняння ланки в операційній формі Y(p) = kX(p) Передаточна функція
L(w) = 20 lg A(w) = 20 lg k АЧХ і ФЧХ безінерційної ланки показують, що сигнали будь-якої частоти (0; +¥) проходять через ланку з однаковим відношенням амплітуд вихідної і вхідної величини, рівним k і не мають між собою фазового зсуву. Прикладами безінерційних ланок є редуктор, датчик потенціометра кутового переміщення, тахогенератор, який використовують як датчик частоти обертання і т. д. Пропорційними ланками моделюються підсилювачі, редуктори, дільники напруги і т. п. Слід зазначити, що поняття безінерційної ланки є продуктом математичної ідеалізації. Насправді всі реальні конструктивні елементи САК володіють деякою інерційністю, оскільки передача енергії з входу на вихід елементу не може здійснюватися миттєво. Проте, якщо інерційність того або іншого елементу на два-три порядки менша, ніж у решти елементів даної системи, то його вважають безінерційною ланкою.
5.2. Інерційна ланка першого порядку (аперіодична ланка)
Фізично аперіодична ланка містить один елемент, що накопичує енергію, а також один або декілька елементів здатних її розсіювати. Диференціальне рівняння: k – коефіцієнт передачі, характеризує властивості ланки в статичному режимі. Т – постійна часу, характеризує інерційність ланки
Коефіцієнт посилення ланки визначає рівень, до якого прагне перехідна характеристика з часом. Дотична, проведена на початку координат до перехідної характеристики, перетинає цей рівень у момент часу, рівний постійної часу аперіодичної ланки Т. Ці властивості аперіодичної ланки, а також те, що перехідний процес закінчується приблизно за час, що дорівнює 3Т, дозволяє визначати параметри ланки (коефіцієнт посилення і постійну часу) по його експериментальній перехідній характеристиці. Рівняння ланки в операторній формі (Tp+1)Y(p) = kX(p) Передаточна функція АФЧХ:
![]()
Аналізуючи графік функції
У практичних розрахунках використовують наближену або асимптотичну характеристику Першу асимптоту (низькочастотна) маємо при низьких частотах, коли величиною Друга асимптота (високочастотна) замінює точну характеристику при великих частотах, коли Ця асимптота залежить від частоти. У логарифмічній системі координат вона є прямою, що має негативний нахил і що проходить через точку з координатами Значення сполучної частоти
k = 1 T = RC k = 1 T = L/R
Дата добавления: 2014-01-07; Просмотров: 4066; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |