Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Понятие интегральной суммы и определённого интеграла




Пусть на промежутке [ a; b ] задана функция f (x). Будем считать функцию непрерывной, хотя это не обязательно. Выберем на промежутке [ a; b ] произвольные числа x 1, x 2, x 3, ¼, xn -1, удовлетворяющие условию:
a < x 1,< x 2<¼< xn -1,< b. Эти числа разбивают промежуток [ a; b ] на n более мелких промежутков: [ a; x 1], [ x 1; x 2], ¼, [ xn -1; b ]. На каждом из этих промежутков выберем произвольно по одной точке: c 1Î[ a; x 1], c 2Î[ x 1; x 2], ¼, cn Î[ xn -1; b ].

Введем обозначения: D x 1 = x 1 a; D x 2 = x 2 x 1; ¼, D xn = b – xn- 1.

Составим сумму: .

Она называется интегральной суммой функции f (x) по промежутку [ a; b ]. Очевидно, что интегральная сумма зависит от способа разбиения промежутка и от выбора точек ci.

Каждое слагаемое интегральной суммы представляет собой площадь прямоугольника, покрытого штриховкой (Рис. 1).

Рассмотрим процесс, при котором , т.е. число точек разбиения неограниченно возрастает. Определенным интегралом от функции по промежутку [ a; b ] называется предел, к которому стремится интегральная сумма, если этот предел существует:

.

Если такой предел существует, то он не зависит от первоначального разбиения промежутка [ a; b ] и выбора точек ci.

Число a называется нижним пределом интегрирования, ачислоb ¾ верхним пределом интегрирования.

Рассмотрим криволинейную трапецию. На Рис. 2 криволинейная трапеция выделена штриховкой. Площадь S этой трапеции определяется формулой .

Если f (x) < 0 во всех точках промежутка [ a; b ] и непрерывна на этом промежутке (например, как изображено на рисунке 3), то площадь криволинейной трапеции, ограниченной отрезком [ a; b ] горизонтальной оси координат, прямыми x = a; x = b и графиком функции y = f (x), определяется формулой

.

Перечислим свойства определенного интеграла:

1) (здесь k ‑ произвольное число);

2) ;

3) ;

4) Если [ a; b ], то .

Из этих свойств следует, например, что .

Все приведенные выше свойства непосредственно следуют из определения определенного интеграла.

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 531; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.