КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Понятие интегральной суммы и определённого интеграла
Пусть на промежутке [ a; b ] задана функция f (x). Будем считать функцию непрерывной, хотя это не обязательно. Выберем на промежутке [ a; b ] произвольные числа x 1, x 2, x 3, ¼, xn -1, удовлетворяющие условию: Введем обозначения: D x 1 = x 1 – a; D x 2 = x 2 – x 1; ¼, D xn = b – xn- 1. Составим сумму: . Она называется интегральной суммой функции f (x) по промежутку [ a; b ]. Очевидно, что интегральная сумма зависит от способа разбиения промежутка и от выбора точек ci. Каждое слагаемое интегральной суммы представляет собой площадь прямоугольника, покрытого штриховкой (Рис. 1). Рассмотрим процесс, при котором , т.е. число точек разбиения неограниченно возрастает. Определенным интегралом от функции по промежутку [ a; b ] называется предел, к которому стремится интегральная сумма, если этот предел существует: . Если такой предел существует, то он не зависит от первоначального разбиения промежутка [ a; b ] и выбора точек ci. Число a называется нижним пределом интегрирования, ачислоb ¾ верхним пределом интегрирования. Рассмотрим криволинейную трапецию. На Рис. 2 криволинейная трапеция выделена штриховкой. Площадь S этой трапеции определяется формулой . Если f (x) < 0 во всех точках промежутка [ a; b ] и непрерывна на этом промежутке (например, как изображено на рисунке 3), то площадь криволинейной трапеции, ограниченной отрезком [ a; b ] горизонтальной оси координат, прямыми x = a; x = b и графиком функции y = f (x), определяется формулой . Перечислим свойства определенного интеграла: 1) (здесь k ‑ произвольное число); 2) ; 3) ; 4) Если cÎ [ a; b ], то . Из этих свойств следует, например, что . Все приведенные выше свойства непосредственно следуют из определения определенного интеграла.
Дата добавления: 2014-01-07; Просмотров: 556; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |