Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Раскраска графа

Задача об истинности КНФ-выражения

Типичные NP-полные задачи

В 1971 году Кук доказал NP-полноту задачи о конъюнктивной нормальной форме (КНФ).

NP-полнота большого числа задач была доказана путем редукции к ним задачи о конъюнктивной нормальной форме. В книге Гэри и Джонсона, опубликованной в 1979 году, приведены сотни задач, NP-полнота которых доказана.

Значение класса NPC состоит еще и в том, что ему принадлежат многие известные и важные в прикладном отношении задачи. Рассмотрим некоторые из них:

 

Каждая из задач, которые мы будем обсуждать, является либо оптимизационной, либо задачей о принятии решения.

Целью оптимизационной задачи обычно является конкретный результат, представляющий собой минимальное или максимальное значение. В задаче о принятии решения обычно задается некоторое пограничное значение, и нас интересует, существует ли решение, большее (в задачах максимизации) или меньшее (в задачах минимизации) указанной границы. Ответом в задачах оптимизации служит полученный конкретный результат, а в задачах о принятии решений — «да» или «нет».

Мы рассматривали оптимизационный вариант задачи о коммивояжере. Это задача минимизации, и нас интересовал путь минимальной стоимости. В варианте принятия решения мы могли бы спросить, существует ли путь коммивояжера со стоимостью, меньшей заданной константы С.

Ясно, что ответ в задаче о принятии решения зависит от выбранной границы. Если эта граница очень велика (например, она превышает суммарную стоимость всех дорог), то ответ «да» получить несложно. Если эта граница чересчур мала (например, она меньше стоимости дороги между любыми двумя городами), то ответ «нет» также дается легко. В остальных промежуточных случаях время поиска ответа очень велико и сравнимо со временем решения оптимизационной задачи. Поэтому мы будем говорить вперемешку о задачах оптимизации и принятия решений, используя ту из них, которая точнее отвечает нашим текущим целям.

 

Конъюнктивная нормальная форма (КНФ) представляет собой последовательность булевских выражений, связанных между собой операторами AND (обозначаемыми ), причем каждое выражение является мономом от булевских переменных или их отрицаний, связанных операторами OR (которые обозначаются через V). Вот пример булевского выражения в конъюнктивной нормальной форме (отрицание обозначается чертой над именем переменной):

Задача об истинности булевского выражения в конъюнктивной нормальной форме ставится только в варианте принятия решения: существуют ли у переменных, входящих в выражение, такие значения истинности, подстановка которых делает все выражение истинным. Как число переменных, так и сложность выражения не ограничены, поэтому число комбинаций значений истинности может быть очень велико.

 

Граф G (V, Е) представляет собой набор вершин, или узлов, V и набор ребер Е, соединяющих вершины попарно. Здесь мы будем заниматься только неориентированными графами.

Вершины графа можно раскрасить в разные цвета, которые обычно обозначаются целыми числами. Нас интересуют такие раскраски, в которых концы каждого ребра окрашены разными цветами. Очевидно, что в графе с N вершинами можно покрасить вершины в N различных цветов, но можно ли обойтись меньшим количеством цветов?

-В задаче оптимизации нас интересует минимальное число цветов, необходимых для раскраски вершин графа.

-В задаче принятия решения нас интересует, можно ли раскрасить вершины в С или менее цветов.

У задачи о раскраске графа есть практические приложения. Если каждая вершина графа обозначает читаемый в колледже курс, и вершины соединяются ребром, если есть студент, слушающий оба курса, то получается весьма сложный граф. Если предположить, что каждый студент слушает 5 курсов, то на студента приходится 10 ребер. Предположим, что на 3500 студентов приходится 500 курсов. Тогда у получившегося графа будет 500 вершин и 35 000 ребер. Если на экзамены отведено 20 дней, то это означает, что вершины графа нужно раскрасить в 20 цветов, чтобы ни у одного студента не приходилось по два экзамена в день.

Разработка бесконфликтного расписания экзаменов эквивалентна раскраске графов. Однако задача раскраски графов принадлежит к классу NP, поэтому разработка бесконфликтного расписания за разумное время невозможна. Кроме того при планировании экзаменов обычно требуется, чтобы у студента было не больше двух экзаменов в день, а экзамены по различным частям курсам назначаются в один день. Очевидно, что разработка «совершенного» плана экзаменов невозможна, и поэтому необходима другая техника для получения по крайней мере неплохих планов. Приближенные алгоритмы рассмотрим в следующей лекции.

 

 

<== предыдущая лекция | следующая лекция ==>
Лекция 2. NP-полные задачи | Раскладка по ящикам
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 694; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.