Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Интегральная форма уравнений массоотдачи и массопередачи

Проинтегрировав уравнения (1.15) и (1.16) по величине межфазной поверхности всего аппарата или его участка можно получить уравнения массоотдачи в интегральной форме:

 

 

(1.23)

 

Проведя аналогичную операцию с уравнениями (1.18) и (1.20) получим:

 

(1.24)

Обычно на рассматриваемом участке коэффициенты Ку и Кх могут быть приняты постоянными. Тогда можно записать:

 

(1.25)

(1.26)

По другой фазе:

 

(1.27)

(1.28)

Уравнения (1.25) и (1.27) носят название основных уравнений массопередачи. Определим средние движущие силы массопередачи при неизменном расходе по высоте аппарата, при и = const для модели идеального вытеснения (МИВ).

Для элементарного участка dF межфазной поверхности количество распределяемого компонента переносимого из фазы G в фазу L за единицу времени d можно выразить как:

 

(1.29)

 

Или (1.30)

Уравнение материального баланса по распределённому компоненту имеет вид:

 

(1.31)

Из уравнений (1.29) и (1.30) получим:

 

(1.32)

Из уравнения (1.31) находим и подставляем в (1.32). Тогда получим:

 

(1.33)

Сопоставив уравнения (1.25) и (1.33) находим:

 

(1.34)

 

Аналогичным путём можно получить:

 

(1.35)

В частном случае, если в пределах интегрирования коэффициент распределения m=const (равновесная линия на этом участке прямая, т.е. tgα=const), то имеет вид:

(1.36)

Здесь и движущие силы массопередачи в верхнем и нижнем сечениях аппарата.

Рис.1.7. Определение средней движущей силы массопередачи.

Аналогичное соотношение справедливо и для

Если линия равновесия обладает существенной кривизной, то аппарат можно разбить на ряд участков и для каждого участка определить свой m.

Структура потока влияет на величину средней движущей силы массопередачи, она максимальна для МИВ, минимальна для МИС.

1.4.3 Объёмные коэффициенты массоотдачи и массопередачи.

В реальном аппарате определить поверхность контакта фаз, зачастую, бывает сложно, т.к. она может складываться из поверхности струй, пузырей, капель и т.д. Необходимо получить уравнения массотдачи и массопередачи, в которые межфазная поверхность не входит.

Введём понятие удельной поверхности контакта фаз , как поверхность контакта, образующаяся в единичном рабочем объёме аппарата:

(1.37)

Выразив , перепишем уравнения массотдачи и массопередачи:

 

(1.38)

(1.39)

объёмные коэффициенты массоотдачи и массопередачи. Определить эти коэффициенты теоретическим путём достаточно сложно. Они, обычно, определяются экспериментально. Связь между обычными и объемными коэффициентами массоотдачи и массопередачи имеет следующий вид:

 

 

При расчете аппарата со ступенчатым контактом фаз коэффициенты массоотдачи и массопередачи удобнее относить не к объему аппарата, а к площади рабочего сечения контактного устройства , например, площади рабочего сечения тарелки. Вводя удельную поверхность контакта фаз (межфазная поверхность, образующаяся на данном контактном устройстве, отнесенная к его рабочему сечению) можно записать уравнение массопередачи следующим образом:

 

(1.40)

 

(1.41)

 

Аналогичным образом можно переписать и другие уравнения с использованием коэффициентов массоотдачи и массопередачи, отнесенных к площади рабочего сечения контактного устройства:

 

<== предыдущая лекция | следующая лекция ==>
Уравнения массоотдачи и массопередачи в локальной форме | Число и высота единиц переноса
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 770; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.