КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Стаж работы рабочих цеха
Определить средний стаж рабочих цеха. Он равен:
Средняя гармоническая представляет собой обратную величину средней арифметической из обратных величин. Она бывает простая и взвешенная: простая – , взвешенная – . Средняя квадратическая используется в том случае, когда необходимо возводить варианты в квадрат: простая – , взвешенная – . Средняя квадратическая применяется в технике, для расчета среднего квадратического отклонения. Средняя геометрическая – Средняя хронологическая: простая – ; (Она применяется в том случае, когда интервалы времени между явлениями равны). взвешенная – ; (Она применяется в том случае, когда интервалы времени между явлениями неравны). Свойства средней арифметической. 1. Средняя арифметическая из постоянных чисел равна этому постоянному числу. Пусть х = a, тогда . 2. Если веса всех вариантов пропорционально изменить, т.е. увеличить или уменьшить в одно и то же число раз, то средняя арифметическая нового ряда от этого не изменится. Пусть f уменьшим в к раз. Тогда . 3. Если все варианты уменьшить или увеличить на какое-либо число, то средняя арифметическая нового ряда уменьшится или увеличится на столько же. Уменьшим все варианты х на а, т.е. . Тогда . Среднюю арифметическую первоначального ряда можно получить, прибавляя к средней арифметической нового ряда, ранее вычтенное из вариантов число a, т.е. . 4. Если все варианты уменьшить в к раз, то средняя арифметическая нового ряда уменьшится в к раз. Пусть , тогда . Среднюю арифметическую первоначального ряда можно получить, увеличив среднюю арифметическую нового ряда в раз: . 5. Сумма положительных и отрицательных отклонений отдельных вариантов от средней, умноженных на веса, равна нулю. . Перечисленные свойства позволяют в случае необходимости упрощать расчеты путем замены абсолютных частот относительными, уменьшать варианты на какое-либо число а, сокращать их в к раз и рассчитывать среднюю арифметическую из уменьшенных вариантов, а затем переходить к средней первоначального ряда. Способ исчисления средней арифметической с использованием ее свойств известен в статистике как способ «условного нуля» или «условной средней», а также как «способ моментов». Этот способ расчета находит отражение в следующей формуле: . Если уменьшенные варианты обозначить через, то . Для характеристики среднего значения признака в вариационном ряду используется средняя арифметическая, мода и медиана. Мода – это наиболее часто встречающееся значение признака в совокупности. Медианой называется численное значение признака, расположенное в середине ранжированного ряда, которое делит этот ряд на две равные по численности части. Для определения медианы сначала находят ее место в ряду по формуле , где n – число членов ряда (). Если число единиц чётное, то место медианы в ряду определяется как . Применяется мода при экспертных оценках, при установлении размера изделий, который пользуется наибольшим спросом (одежда, обувь), медиана используется при статистическом контроле качества продукции. Пример. Таблица 14
Дата добавления: 2014-01-07; Просмотров: 440; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |