Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Ролля, Лагранжа, Коши). Правило Лопиталя




Приложения производной и исследование функции.

Теорема 1 (Ферма). Если функция у=f (x) достигает своего наибольшего или наименьшего значения в точке с из интервала (a; b) и дифференцируема в этой точке, тогда

Теорема 2 (Ролля). Если функция у=f (x) непрерывна на отрезке [ a; b ], дифференцируема внутри этого отрезка и f (a)= f (b), то существует по крайней мере одна точка с (a < c < b) такая, что f /(c)=0.

Теорема 3 (Лагранжа). Если функция непрерывна на отрезке и дифференцируема внутри этого отрезка, то существует по крайней мере одна точка такая, что

Эта формула называется формулой Лагранжа конечных приращений.

Теорема 4 (Коши). Если функции и непрерывны отрезке и дифференцируемы внутри него, причем нигде при то найдется хотя бы одна точка такая, что

Правило Лопиталя (для раскрытия неопределенностей вида ). Если функции удовлетворяют условиям теоремы Коши в некоторой окрестности точки х = х 0, стремятся к нулю (или при и существует То существует также и эти пределы равны, т.е.

Правило Лопиталя справедливо и при Если частное вновь дает в предельной точке неопределенность одного из двух названных видов и функции удовлетворяют всем требованиям, ранее указанным для функций то можно перейти к отношению вторых производных и т. Д. Однако следует помнить, что предел отношения самих функций может существовать, в то время как отношение производных не стремится ни к какому пределу.

 

Лекция 19.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 346; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.