Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Критерий ожидаемого значения

Принятие решений в условиях риска.

Критерии принятия решения

ЛПР определяет наиболее выгодную стратегию в зависимости от целевой установки, которую он реализует в процессе решения задачи. Результат решения задачи ЛПР определяет по одному из критериев принятия решения. Для того, чтобы прийти к однозначному и по возможности наиболее выгодному варианту решению, необходимо ввести оценочную (целевую) функцию. При этом каждой стратегии ЛПР (Ai) приписывается некоторый результат Wi, характеризующий все последствия этого решения. Из массива результатов принятия решений ЛПР выбирает элемент W, который наилучшим образом отражает мотивацию его поведения.

В зависимости от условий внешней среды и степени информативности ЛПР производится следующая классификация задач принятия решений:

  • в условиях риска;
  • в условиях неопределенности;
  • в условиях конфликта или противодействия (активного противника).

Использование критерия ожидаемого значения обусловлено стремлением максимизировать ожидаемую прибыль (или минимизировать ожидаемые затраты). Использование ожидаемых величин предполагает возможность многократного решения одной и той же задачи, пока не будут получены достаточно точные расчетные формулы. Математически это выглядит так: пусть Х — случайная величина с математическим ожиданием MX и дисперсией DX. Если x1, x2,..., xn — значения случайной величины (с.в.) X, то среднее арифметическое их (выборочное среднее) значений x^=(x1+x2+...+xn)/n имеет дисперсию DX/n. Таким образом, когда n→∞ DX/n→∞ и X→MX.

Другими словами при достаточно большом объеме выборки разница между средним арифметическим и математическим ожиданием стремится к нулю (так называемая предельная теорема теории вероятности). Следовательно, использование критерия ожидаемое значение справедливо только в случае, когда одно и тоже решение приходится применять достаточно большое число раз. Верно и обратное: ориентация на ожидания будет приводить к неверным результатам, для решений, которые приходится принимать небольшое число раз.

Пример 1. Требуется принять решение о том, когда необходимо проводить профилактический ремонт ПЭВМ, чтобы минимизировать потери из-за неисправности. В случае если ремонт будет производится слишком часто, затраты на обслуживание будут большими при малых потерях из-за случайных поломок.

Так как невозможно предсказать заранее, когда возникнет неисправность, необходимо найти вероятность того, что ПЭВМ выйдет из строя в период времени t. В этом и состоит элемент»риска».

Математически это выглядит так: ПЭВМ ремонтируется индивидуально, если она остановилась из-за поломки. Через T интервалов времени выполняется профилактический ремонт всех n ПЭВМ. Необходимо определить оптимальное значение m, при котором минимизируются общие затраты на ремонт неисправных ПЭВМ и проведение профилактического ремонта в расчете на один интервал времени.

Пусть рt — вероятность выхода из строя одной ПЭВМ в момент t, а nt — случайная величина, равная числу всех вышедших из строя ПЭВМ в тот же момент. Пусть далее С1 – затраты на ремонт неисправной ПЭВМ и С2 — затраты на профилактический ремонт одной машины.

Применение критерия ожидаемого значения в данном случае оправдано, если ПЭВМ работают в течение большого периода времени. При этом ожидаемые затраты на один интервал составят

ОЗ = (C1∑M(nt)+C1n)/T,

где M(nt) — математическое ожидание числа вышедших из строя ПЭВМ в момент t. Так как nt имеет биномиальное распределение с параметрами (n, pt), то M(nt) = npt. Таким образом

ОЗ = n(C1∑pt+C2)/T.

Необходимые условия оптимальности T* имеют вид:

ОЗ (T*-1) ≥ ОЗ (T*),

ОЗ (T*+1) ≥ ОЗ (T*).

Следовательно, начиная с малого значения T, вычисляют ОЗ(

T), пока не будут удовлетворены необходимые условия оптимальности.

Пусть С1 = 100; С2 = 10; n = 50. Значенияpt имеют вид:

T рt ∑рt ОЗ(Т)
  0.05   50(100⋅0+10)/1=500
  0.07 0.05  
  0.10 0.12 366.7
  0.13    
  0.18 0.35  

T*→3, ОЗ(Т*)→366.7

Следовательно профилактический ремонт необходимо делать через T*=3 интервала времени.

Критерий «ожидаемое значение — дисперсия».

Критерий ожидаемого значения можно модифицировать так, что его можно будет применить и для редко повторяющихся ситуаций.

Если х — с. в. с дисперсией DX, то среднее арифметическое x^ имеет дисперсию DX/n, где n — число слагаемых в x^. Следовательно, если DX уменьшается, и вероятность того, что x^ близко к MX, увеличивается. Следовательно, целесообразно ввести критерий, в котором максимизация ожидаемого значения прибыли сочетается с минимизацией ее дисперсии.

Пример 2. Применим критерий «ожидаемое значение — дисперсия» для примера 1. Для этого необходимо найти дисперсию затрат за один интервал времени, т.е. дисперсию

зТ=(C1∑nt+C2n)/T

Т.к. nt, t = {1, T-1} — с.в., то зТтакже с.в. С.в. ntимеет биномиальное распределение с M(nt) = nptи D(nt) = npt(1–pt). Следовательно,

D(зТ) = D((C1∑nt+C2n)/T) = (C1/T)2 D(∑nt) =

= (C1/T)2 ∑Dnt = (C1/T)2 ∑npt(1-pt) = (C1/T)2 {∑pt - ∑pt2},

где С2n = const.

Из примера 1 следует, что

М(зТ) = М(з(Т)).

Следовательно искомым критерием будет минимум выражения

М(з(Т)) + к D(зТ).

Замечание. Константу «к» можно рассматривать как уровень не склонности к риску, т.к. «к» определяет «степень возможности» дисперсии Д(зТ) по отношению к математическому ожиданию. Например, если предприниматель, особенно остро реагирует на большие отрицательные отклонения прибыли вниз от М(з(Т)), то он может выбрать «к» много больше 1. Это придает больший вес дисперсии и приводит к решению, уменьшающему вероятность больших потерь прибыли.

При к=1 получаем задачу

M(з(T))+D(з(T)) = n { (C1/T+C12/T2)∑pt - C12/T2∑pt2 + C2/T }

По данным из примера 1 можно составить следующую таблицу

T pt pt2 ∑pt ∑pt2 М(з(Т))+D(з(Т))
  0,05 0,0025     500.00
  0,07 0,0049 0,05 0,0025 6312,50
  0,10 0,0100 0,12 0,0074 6622,22
  0,13 0,0169 0,2 0,0174 6731,25
  0,18 0,0324 0,35 0,0343 6764,00

Из таблицы видно, что профилактический ремонт необходимо делать в течение каждого интервала Т*=1.

<== предыдущая лекция | следующая лекция ==>
Решение задачи | Принятие решений в условиях неопределенности
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 2592; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.