Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Понятие и вероятностный смысл математического ожидания дискретной случайной величины

 

Как уже известно, закон распределения пол­ностью характеризует случайную величину. Однако часто закон распределения неизвестен и приходится ограничи­ваться меньшими сведениями. Иногда даже выгоднее пользоваться числами, которые описывают случайную величину суммарно; такие числа называют числовыми характеристиками случайной величины. К числу важных числовых характеристик относится математическое ожи­дание.

Математическое ожидание, как будет показано далее, приближенно равно среднему значению случайной вели­чины. Для решения многих задач достаточно знать мате­матическое ожидание. Например,если известно, что мате­матическое ожидание числа выбиваемых очков у первого стрелка больше, чем у второго, то первый стрелок в сред­нем выбивает больше очков, чем второй, и, следова­тельно, стреляет лучше второго. Хотя математическое ожидание дает о случайной величине значительно меньше сведений, чем закон ее распределения, но для решения задач, подобных приведенной и многих других, знание математического ожидания оказывается достаточным.

Математическое ожидание дискретной случайной величины

Математическим ожиданием дискретной слу­чайной величины называют сумму произведений всех ее возможных значений на их вероятности.

Если дискретная случайная величина Х принимает счетное множество возможных значений, то

причем математическое ожидание существует, если ряд в правой части равенства сходится абсолютно.

Замечание.Из определения следует, что математическое ожиданиедискретной случайной величины есть неслучайная (постоянная) величина. Рекомендуется запомнить это утверждение, так как далее оно используется многократно. В дальнейшем будет пока­зано, что математическое ожидание непрерывной случайной величины также есть постоянная величина.

Пример 1. Найти математическое ожидание случайной вели­чины X. зная закон ее распределения:

Решение. Искомое математическое ожидание равно сумме произведений всех возможных значений случайной величины на их вероятности:

М (Х}==3.0,1 +5.0,6+2.0,3==3,9.

Пример 2. Найти математическое ожидание числа появлений события А в одном испытании, если вероятность события А равна р.

Решение. Случайная величина Х— число появлений события

Итак, математическое ожидание числа появлений собы­тия в одном испытании равно вероятности этого собы­тия.Этот результат будет использован далее (ниже).

 

<== предыдущая лекция | следующая лекция ==>
Геометрическое распределение | Вероятностный смысл математического ожидания
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1578; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.