КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
График функции распределения
Итак, То
Следствие 2.Вероятность того, что непрерывная случайная величина Х примет одно определенное значение, равна нулю. Используя это положение, легко убедиться в справедливости равенств Таким образом, не представляет интереса говорить о вероятности того, что непрерывная случайная величина примет одно определенное значение,но имеет смысл рассматривать вероятность попадания ее в интервал, пусть даже сколь угодно малый. Этот факт полностью соответствует требованиям практических задач. Например, интересуются вероятностью того, что размеры деталей не выходят за дозволенные границы, но не ставят вопроса о вероятности их совпадения с проектным размером. Заметим, что было бы неправильным думать, что ра- классическим определением вероятности). Действительно, в результате испытания случайная величина обязательно примет одно из возможных значений; в частности, это довательно, вероятность его равна единице. Следствие.Если возможные значения непрерывной случайной величины расположены на всей оси х, то справедливы следующие предельные соотношения: Доказанные свойства позволяют представить, как выглядит график функции распределения непрерывной случайной величины. График расположен в полосе, ограниченной прямыми у==0, у=1 (первое свойство). При возрастании x в интервале (a, b), в котором заключены все возможные значения случайной величины, график «подымается вверх» (второе свойство). Рис. 1 При ординаты графика равны нулю; при
Дата добавления: 2014-01-07; Просмотров: 191; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |