Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Критерий Рауса




Алгебраические критерии устойчивости

 

Алгебраические критерии позволяют непосредственно по коэффициентам характеристического уравнения судить об устойчивости систем. Различные формы таких критериев рассматриваются в курсе высшей алгебры. В теории управления наибольшее применение из алгебраических критериев устойчивости получили критерий Рауса и критерий Гурвица.

Линейная система, характеристический полином которой равен

,

где a0>0, устойчива, если положительны все элементы первого столбца следующей таблицы

(5.7)

В первой строке таблицы Рауса расположены четные коэффициенты характеристического полинома, во второй - нечетные. Если степень характеристического полинома - четное число, то последний элемент второй строки равен нулю. Третья и последующие строки определяются следующим образом:

сij = сi-1,1´сi-2,j+1 - сi-2,1´сi-1,j+1; сi,L = 0;

i = 3, 4,..., n+1; j = 1, 2,..., L-1; L = [0.5´n]+1.

Знак [ ] означает целую часть числа.

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 344; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.