КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Статистические ряды распределения
После определения группировочного признака и границ групп, строится ряд распределения. Статистический ряд распределения представляет собой упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку. Он характеризует состав (структуру) изучаемого явления, позволяет судить об однородности совокупности, закономерности распределения и границах варьирования единиц совокупности. Ряды распределения, построенные по атрибутивным признакам, называются атрибутивными. Примером атрибутивных рядов могут служить распределения населения по полу, занятости, национальности, профессии и т. д. Ряды распределения, построенные по количественному признаку (в порядке возрастания или убывания наблюденных значений), называются вариационными. Например, распределение населения по возрасту, рабочих – по стажу работы, заработной плате и т. д. Вариационные ряды распределения состоят из двух элементов: вариантов и частот. Числовые значения количественного признака в вариационном ряду распределения называются вариантами. Они могут быть положительными и отрицательными, абсолютными и относительными. Так, при группировке предприятий по результатам хозяйственной деятельности варианты – положительные (прибыль) или отрицательные (убыток) числа. Частоты – это численности отдельных вариантов или каждой группы вариационного ряда, т. е. это числа, показывающие: как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот называется объемом совокупности и определяет число элементов всей совокупности. Частости – это частоты, выраженные в виде относительных величин (долях единиц или процентах). Сумма частостей равна единице или 100%. Замена частот частостями позволяет сопоставлять вариационные ряды с разным числом наблюдений. Вариационные ряды в зависимости от характера вариации подразделяются на дискретные и интервальные. Дискретные вариационные ряды основаны на дискретных (прерывных) признаках, имеющих только целые значения (например, тарифный разряд рабочих, число детей в семье), на дискретных признаках, представленных в виде интервалов; интервальные – на непрерывных признаках (принимающих любые значения, в том числе и дробные). При наличии достаточно большого количества вариантов значений признака первичный ряд является трудно обозримым, и непосредственное рассмотрение его не дает представления о распределении единиц по значению признака в совокупности. Поэтому первым шагом в упорядочении первичного ряда является его ранжирование, т. е. расположение всех вариантов в возрастающем (или убывающем) порядке. Например, стаж работы (годы) 22 рабочих бригады характеризуется следующими данными: 2, 4, 5, 5, 6, 6. 5, 6, 6, 7, 7, 8, 8, 9, 10, 11, 4, 3, 3, 4, 4, 5. Ранжированный ряд, построенным по этим данным: 2, 3. 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 9, 10, 11. При рассмотрении первичных данных можно видеть, что одинаковые варианты признака у отдельных единиц повторяются (здесь и далее – частота повторения; «n» – объем изучаемой совокупности). Способы построения дискретных и интервальных рядов различны. Для построения дискретного ряда с небольшим числом вариантов выписываются все встречающиеся варианты значений признака «х», а затем подсчитывается частота повторения варианта. Ряд распределения принято оформлять в виде таблицы, состоящей из двух колонок (или строк), в одной из которых представлены варианты, в другой – частоты. Построение дискретного вариационного ряда не составляет труда. Для построения ряда распределения непрерывно изменяющихся признаков, либо дискретных, представленных в виде интервалов («от—до»), необходимо установить оптимальное число групп (интервалов), на которое следует разбить вес единицы изучаемой совокупности. При группировке внутри однокачественной совокупности появляется возможность применения равных интервалов, число которых зависит от вариаций признака в совокупности и от количества обследованных единиц. Проиллюстрируем построение интервального вариационного ряда по данным приведенного ранее примера распределения рабочих по стажу работы. Для нашего примера, согласно формуле Стерджесса (3.1), при N = 22 число групп и = 5. Зная число групп, определим интервал по формуле (3.2): Как видно из данного распределения, основная масса рабочих имеет стаж работы от 4 до 8 лет. Ряды распределений удобно изучать с помощью графического метода.
Контрольные вопросы
Дата добавления: 2014-01-07; Просмотров: 3076; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |