КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Практические вопросы дискретизации реальных сигналов
Сообщения, передаваемые по каналам связи (речь, музыка, телевизионный сигнал, телеметрические данные и т.д.), на практике являются функциями с ограниченным спектром. Например, верхняя частота спектра Fm примерно равна: для речи - 3,5 кГц, для музыки - 10 - 12 кГц (удовлетворительное воспроизведение), для телевизионных сигналов - 6 МГц. Некоторая некорректность состоит в том, что теорема отсчетов доказана для функций Х(t), заданных на неограниченном интервале t Î (-¥, ¥). Соответственно отсчеты { Х(iDt), i = 0, ±1, ±2,..} представляют собой бесконечную последовательность. Однако в реальных условиях сообщения Х(t) имеют начало и конец, а следовательно, конечную длительность T< ¥. Условия финитности спектра и конечной длительности сообщения, строго говоря, несовместимы. Спектр функции с конечной длительностью теоретически имеет значения, отличные от нуля, при любых значениях частоты FÎ (-¥, ¥). Тогда при любом выборе шага дискретизации Dt соседние боковые полосы спектра (см. рис.1.4) перекрываются, и на выходе идеального фильтра нижних частот с частотой среза F = 1/2 Dt будет восстановлен сигнал Х*(t), не полностью совпадающий с исходным сигналом Х(t). Во-первых, отсекаются частотные составляющие спектра с |f| >F. Во-вторых, в полосу пропускания фильтра попадают "хвосты" периодического продолжения спектра. Вместе с тем всегда можно задать шаг дискретизации Dt (или верхнюю частоту спектра Fm =1/2 Dt) так, чтобы энергия ЭD, сосредоточенная в отсекаемых "хвостах" спектра (на частотах f >1/2 Dt), была пренебрежимо мала по сравнению с энергией всего сигнала Эx. Ошибка восстановления сигнала Х*(t) на выходе фильтра зависит от отношения ЭD /Эx и может быть выбором Dt (или F=1/2 Dt) сделана меньше любой заданной величины. Совершенно очевидно, что если искажения сообщений, обусловленные временной дискретизацией, будут значительно меньше искажений, вызванных помехами в канале связи и допустимых техническими условиями для данной системы передачи информации, то такие искажения существенного значения не имеют и могут не учитываться. Таким образом, приближенно можно принять, что реальные сообщения имеют конечную длительность T и одновременно их спектры ограничены по частоте величиной Fm. При этом бесконечный ряд Котельникова (1.17) преобразуется в конечный с числом ненулевых отсчетов n, примерно равным отношению длительности сообщения к интервалу дискретности: (1.18) Основные формулы теоремы отсчетов для сигналов, отличных от нуля на конечном интервале tÎ (0, T), принимают вид: (1.19) (1.20) (1.21) Наконец, когда сигнал { X(t), tÎ(0, T) } задан конечным числом отсчетов X(0), X(Dt),.., x(kDt), в формулах (1.17) - (1.19) в отличие от соответствующих точных формул следовало бы писать знак приближенного равенства (@). Однако обычно этого не делают. Еще одним приближением, которое не может быть выполнено в действительности, является предположение об "идеальности" амплитудно-частотной характеристики восстанавливающего фильтра H(f). Дело в том, что фильтр с идеально прямоугольной АЧХ имеет ИПХ бесконечной длительности и не может быть реализован на практике. Фильтры же с конечной ИПХ имеют теоретически бесконечную полосу. Нетрудно показать, что влияние конечной длительности ИПХ восстанавливающего фильтра на сигнал Х*(t) имеет тот же характер, что и ограниченность интервала наблюдения функции Х(t). Следовательно, для фильтра НЧ с заданной АЧХ всегда можно выбрать шаг дискретизации Dt таким, чтобы энергия ЭD, просачивающаяся через "хвосты" его амплитудно-частотной характеристики (на частотах f >1/2 Dt), была пренебрежимо мала по сравнению с энергией всего сигнала Эx. В связи с этим на практике шаг дискретизации реальных сообщений Х(t) делают несколько меньшим, а частоту дискретизации, соответственно, – несколько большей (по крайней мере, на 30 - 50 %), нежели предписывает теорема Котельникова.
Дата добавления: 2014-01-07; Просмотров: 317; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |