КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Дискретизация двумерных сигналов (изображений)
Все большую часть передаваемых с использованием РТС ПИ сообщений, особенно в последнее время, составляют сигналы, являющиеся функциями не только времени - λ(t) (речь, музыка и т.п.), но и ряда других переменных, например, λ(x,y), λ(x,y,t) (статические и динамические изображения, карты физических полей и т.п.). В связи с этим естественным является вопрос: можно ли так, как это делается для временных сигналов (или других функций одной переменной), производить дискретизацию многомерных сигналов (функций нескольких переменных)? Ответ на этот вопрос дает теорема дискретизации для двумерных (или в общем случае - для многомерных) сигналов, которая утверждает: функция двух переменных λ(x,y), двумерное преобразование Фурье которой (1.22) равно нулю при fx ≥ fx max и fy ≥ fy max, однозначно определяется своими значениями в равноотстоящих точках плоскости переменных x и y, если интервал дискретизации удовлетворяет условию Δ x ≤ 1/2fx max, Δy ≤ 1/2fy. Процедура дискретизации двумерной функции иллюстрируется примером, приведенным на рис. 1.5 - 1.7.
Рис. 1.5 Рис. 1.6 Рис. 1.7 Доказательство двумерной теоремы дискретизации основано, так же как и для одномерного случая, на однозначном соответствии между сигналами и их спектрами: одинаковым изображениям (двумерным функциям) соответствуют одинаковые спектры, и наоборот, если спектры двух функций одинаковы, то и сами эти функции равны друг другу.
Рис. 1.8 Преобразование Фурье (спектр) дискретизованной двумерной функции FF{λ(iDx,jDy)} получается периодическим продолжением спектра исходной непрерывной функции λ (x,y) в точки частотной плоскости (kD fx,lD fy) (рис. 1.8), где fx и fy - так называемые " пространственные частоты ", являющиеся аналогами обычной " временной " частоты и отражающие скорость изменения двумерной функции λ (x,y) по соответствующим координатам (крупные фрагменты изображения - низкие частоты, мелкие детали - высокие частоты). Аналитически это можно записать следующим образом: (1.23) Из рис.1.8 видно, что если соблюдается условие неперекрываемости периодических продолжений спектра FF{λ(iDx,jDy)}, а это справедливо при Δx ≤ 1/2fx max, Δy ≤ 1/2fy max, то с помощью идеального двумерного ФНЧ с частотной характеристикой вида (1.24) из спектра дискретизованной функции FF{λ(iDx,jDy)} можно абсолютно точно выделить спектр исходной непрерывной функции FF{λ(x,y)} и, следовательно, восстановить саму функцию. Таким образом, видно, что не существует принципиальных отличий в дискретизации между одномерными и двумерными (многомерными) функциями. Результатом дискретизации в обоих случаях является совокупность отсчетов функции, различия могут быть лишь в величине шага дискретизации, числе отсчетов и порядке их следования.
Дата добавления: 2014-01-07; Просмотров: 449; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |