КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Оценка вероятности по частоте
При испытаниях часто приходится оценивать неизвестную вероятность Р события А по его частоте в «n» независимых опытах. В общем случае, если в «п» проведенных опытах обозначить появление события А единицей, а непоявление события — нулем, то эмпирическая вероятность будет равна Математическое ожидание данной величины равно: М [] = р, а ее дисперсия: D [] = pq/n, где q = 1 – p. В теории вероятностей доказывается, что эта дисперсия является минимально возможной, означающей, что оценка является эффективной. Доверительный интервал для вероятности будет равен Iβ( ) = (p1; p2), где
При n → ∞ величины → 0 и → 0, поэтому формулы в пределе принимают вид
Формулами можно пользоваться при достаточно больших п (порядка сотен опытов) и когда вероятность р не слишком велика (когда величины пр и nq порядка 10 и более). При малом числе опытом, а также в том случае, когда вероятность р очень велика или очень мала формулами для построения доверительного интервала пользоваться нельзя, т. к. они получены с рядом допущений. В этом случае доверительный интервал строят из точного закона распределения частоты каковым является биномиальное распределение, для которого где Рт,п — вероятность появления т событий в п опытах, — число т сочетаний в n опытах. Частота равна . Значение доверительного интервала в этих случаях лучше не вычислять, а находить по специальным графикам. На рис. 7.2 приведен такой график для доверительной вероятности β = 0,9. В справочной литературе существуют таблицы p1 и р2 для различных β. Рис. 7.2. Номограмма для определения p1; p2 при доверительной вероятности. β = 0.9.
Дата добавления: 2014-01-07; Просмотров: 575; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |