КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Если в двух соседних узлах функция будет иметь разные знаки, то между этими узлами лежит нечетное число корней уравнения (по меньшей мере один)
Решение нелинейных уравнений с одним неизвестным. Общие сведения о численном решении уравнений с одним неизвестным. Пусть задана непрерывная функция f (x). Требуется найти корни уравнения f (x) = 0 численными методами – это и является постановкой задачи. Численное решение уравнения распадается на несколько подзадач: 1) Анализ количества, характера и расположения корней (обычно путем построения графика функции или исходя из физического смысла исследуемой модели). Здесь возможны следующие варианты:
2) Локализация корней (разбиение на интервалы) и выбор начального приближения к каждому корню. В простейшем случае можно протабулировать функцию с заданным шагом. 3) Вычисление каждого (или интересующего нас) корня уравнения с требуемой точностью. Уточнение происходит с помощью методов, изложенных ниже. Метод дихотомии (бисекций). Иначе называется методом половинного деления. Пусть задан начальный интервал [ x 0, x 1], на котором f (x 0) f (x 1) ≤ 0 (т.е. внутри имеется не менее чем один корень). Найдем x 2 = ½ (x 0 + x 1) и вычислим f (x 2). Если f (x 0) f (x 2) ≤ 0, используем для дальнейшего деления отрезок [ x 0, x 2], если > 0 – используем для дальнейшего деления отрезок [ x 1, x 2], и продолжаем деление пополам. Итерации продолжаются, пока длина отрезка не станет меньше 2ξ – заданной точности. Тогда середина последнего отрезка даст значение корня с требуемой точностью. В качестве иного критерия можно взять | f (x)| ≤ ξy. Скорость сходимости метода невелика, однако он прост и надежен. Метод неприменим к корням четной кратности. Если на отрезке несколько корней, то заранее неизвестно, к какому из них сойдется процесс. Если на заданном интервале предполагается несколько корней, то существует возможность последовательно исключать найденные корни из рассмотрения. Для этого воспользуемся вспомогательной функцией , где – только что найденный корень. Для функций f (x) и g (x) совпадают все корни, за исключением (в этой точке полюс функции g (x)). Для достижения требуемой точности рекомендуется грубо приблизиться к корню по функции g (x), а затем уточнить его, используя f (x). Метод хорд. Идея метода проиллюстрирована рисунком. Задается интервал [ x 0, x 1], на котором f (x 0) f (x 1) ≤ 0, между точками x 0 и x 1 строится хорда, стягивающая f (x). Очередное приближение берется в точке x 2, где хорда пересекает ось абсцисс. В качестве нового интервала для продолжения итерационного процесса выбирается тот, на концах которого функция имеет разные знаки. Условия выхода из итерационного цикла: или | f (x)| ≤ ξ y. Для вывода итерационной формулы процесса найдем точку пересечения хорды (описываемой уравнением прямой) с осью абсцисс: ax 2 + b = 0, где ; b = f (x 0) – ax 0. Отсюда легко выразить . Метод хорд в большинстве случаев работает быстрее, чем метод дихотомии. Недостатки метода те же, что и в предыдущем случае.
Метод Ньютона (касательных). Пусть x 0 – начальное приближение к корню, а f (x) имеет непрерывную производную. Следующее приближение к корню найдем в точке x 1, где касательная к функции f (x), проведенная из точки (x 0, f 0), пересекает ось абсцисс. Затем точно так же обрабатываем точку (x 1, f 1), организуя итерационный процесс. Выход из итерационного процесса по условию . Уравнение касательной, проведенной из точки (x 0, f 0): y (x) = f /(x 0)(x – x 0) + f (x 0) дает для y (x 1) = 0 следующее выражение: , (1) которое и используется для организации итерационного процесса. Итерации сходятся, только если всюду выполняется условие ; в противном случае сходимость будет не при любом начальном приближении, а только в некоторой окрестности корня. Итерации будут сходиться к корню с той стороны, с которой . Метод обладает самой высокой скоростью сходимости: погрешность очередного приближения примерно равна квадрату погрешности предыдущего приближения. Метод можно использовать для уточнения корней в области комплексных чисел, что необходимо при решении многих прикладных задач, например при численном моделировании электромагнитных колебательных и волновых процессов с учетом временной и пространственной диссипации энергии. Недостатком метода можно указать необходимость знать явный вид первой и второй производных, так как их численный расчет приведет к уменьшению скорости сходимости метода. Иногда, ради упрощения расчетов, используют т.н. модифицированный метод Ньютона, в котором значение f /(x) вычисляется только в точке x 0, при этом число итераций увеличивается, но расчеты на каждой итерации упрощаются.
Метод секущих. В отличие от метода Ньютона, можно заменить производную первой разделенной разностью, найденной по двум последним итерациям, т.е. заменить касательную секущей. При этом первый шаг итерационного процесса запишется так: . Для начала итерационного процесса необходимо задать x 0 и x 1, которые не обязательно ограничивают интервал, на котором функция должна менять знак; это могут быть любые две точки на кривой. Выход из итерационного процесса по условию . Сходимость может быть немонотонной даже вблизи корня. При этом вблизи корня может происходить потеря точности, т.н. «разболтка решения», особенно значительная в случае кратных корней. От разболтки страхуются приемом Гарвика: выбирают некоторое ξ x и ведут итерации до выполнения условия . Затем продолжают расчет, пока убывает. Первое же возрастание может свидетельствовать о начале разболтки, а значит, расчет следует прекратить, а последнюю итерацию не использовать.
Метод простых итераций. Суть метода простых итераций в принципе совпадает с методом, изложенным для решения систем линейных алгебраических уравнений. Для нелинейного уравнения метод основан на переходе от уравнения f (x) = 0 (2) к эквивалентному уравнению x = φ (x). Этот переход можно осуществить разными способами, в зависимости от вида f (x). Например, можно положить φ (x) = x + bf (x), (3) где b = const, при этом корни исходного уравнения (2) не изменятся. Если известно начальное приближение к корню x 0, то новое приближение x 1 = φ (x 0), т.е. общая схема итерационного процесса: x k+1 = φ (x k). (4) Наиболее простой критерий окончания процесса . Критерий сходимости метода простых итераций: если вблизи корня | φ /(x)| < 1, то итерации сходятся. Если указанное условие справедливо для любого x, то итерации сходятся при любом начальном приближении. Исследуем выбор константы b в функции (3) с точки зрения обеспечения максимальной скорости сходимости. В соответствии с критерием сходимости наибольшая скорость сходимости обеспечивается при | φ /(x)| = 0. При этом, исходя из (3), b = –1/ f /(x), и итерационная формула (4) переходит в , т.е. в формулу метода Ньютона (1). Таким образом, метод Ньютона является частным случаем метода простых итераций, обеспечивающим самую высокую скорость сходимости из всех возможных вариантов выбора функции φ (x).
Дата добавления: 2014-01-07; Просмотров: 523; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |