КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Строгая формулировки теоремы о времени завершения
Теорема о времени завершения. Если для некоторого множества задач полный коэффициент использования больше, чем требует теорема о верхней границе, то можно прибегнуть к помощи теоремы о времени завершения Теорема о времени завершения (теорема 2) гласит: Если имеется такое множество независимых периодических задач, в котором каждая задача успевает завершиться вовремя в случае, когда все задачи запускаются одновременно, то все задачи смогут завершиться вовремя при любой комбинации моментов запуска. Чтобы убедиться в выполнении условий теоремы, необходимо проверить момент завершения первого периода для данной задачи ti, а также моменты завершения периодов всех задач с более высоким приоритетом. Согласно алгоритму монотонных частот, периоды подобных задач будут меньше, чем для задачи ti. Эти периоды называются точками планирования. Задача t. один раз займет ЦП на время Сi в течение своего периода Тi. Но более приоритетные задачи будут выполняться чаще и могут по крайней мере один раз вытеснить ti. Поэтому нужно учесть также время ЦП, затраченное на более приоритетные задачи. Теорема о времени завершения графически представляется с помощью временной диаграммы, на которой показана упорядоченная по времени последовательность выполнения группы задач. Теорему о времени завершения можно строго сформулировать следующим образом: Множество независимых периодических задач, планируемых согласно алгоритму монотонных частот, будет удовлетворять временным ограничениям при любой комбинации моментов запуска тогда и только тогда, когда , где Сi и Тi – время выполнения и период задачи tj соответственно, а Ri = {(k,p): l≤k≤i, p=l,...,[Ti/Tk]}. В этой формуле ti – это проверяемая задача, a tk – любая из более приоритетных задач, влияющих на время выполнения ti. Для данной пары задач ti и tk каждое значение р представляет некоторую точку планирования задачи tk. В каждой точке планирования необходимо рассмотреть один раз время ЦП Сi, потраченное на задачу ti, а также время, израсходованное на более приоритетные задачи. Это позволит определить, успеет ли ti завершить выполнение к данной точке планирования.
Дата добавления: 2014-01-07; Просмотров: 450; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |