Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Взаимодействие нейтронов с веществом




Не обладая электрическим заря­дом, нейтроны не испытывают действия зарядов электронов и ядер, поэтому характеризуются большой проникающей способностью. Взаимодействуют, в основном с ядрами атомов. В ядерной геофизике используются, в подавля­ю­щем большинстве, тепловые и надтепловые нейтроны с энергией до 100 эв. Для таких нейтронов характерны реакции: поглощения (радиационный захват нейтронов) и рассеяния (упругое и неупругое).

Упругое рассеяние аналогично столкновению двух идеально упругих шаров: сумма энергий до и после рассеяния остается постоянной. Сечение упругого рассеяния σр для большинства ядер в области энергий до 100 эв остается постоянной. Исключением является водород, имеющий наибольшее σр среди основных породообразующих элементов.

n - нейтрон до взаимодействия; M – ядро-мишень до взаимодействия; n’- положение нейтрона после взаимодействия; M’- положение ядра-мишени после взаимодей­ствия; Ψ – угол рассеяния нейтрона. Часть энергии нейтрона при соударении расходуется на создание импульса отдачи ядра-мишени.

Потеря энергии нейтрона при упругом рассеянии зависит от массы ядра-мишени М и угла рассеяния нейтрона. Энергия нейтрона до Е0 и после соударения Е с покоящимся ядром:

Минимальное значение энергии при лобовом соударении (ψ = π) равно:

где

Отсюда следует, что наибольшая потеря энергии нейтрона наблюдается при соударении с ядром-мишенью с М=1, т.е. с ядром водорода. При лобовом соударении с водородом возможна полная потеря энергии нейтрона. Для сравнения: потеря энергии нейтрона при соударении с ядром кислорода составляет 11%; при соударении с ядром кремния – 6%. Благодаря высокому сечению рассеяния и большой потере энергии нейтрона, водород является аномальным замедлителем нейтронов.

В теории чаще употребляется среднелогарифмическая потеря энергии на одно соударение, так называемый параметр замедления

Неупругое рассеяние нейтронов. При этом взаимодействии кинетичес­кая энергия нейтрона расходуется не только на создание отдачи ядра-мише­ни, но и на повышение его внутренней энергии, т.е. на возбуждение ядра. Энергия возбуждения в последующем высвобождается в виде γ-кванта. Спектр излучения γ-квантов для каждого элемента характерен, т.е. строго определен по энергиям γ-квантов. Неупругое рассеяние – поровая реакция, энергия порога Епор уменьшается с ростом массы ядра - от нескольких тысяч Кэв для легких ядер до 100 Кэв для тяжелых. Поэтому неупругое рассеяние происходит только с быстрыми нейтронами и преимущественно на тяжелых ядрах. Сечение неупругого рассеяния становится больше 0 при достижении нейтроном энергии выше Епор, при энергии 10-15 Мэв достигает максималь­ного значения.

Поглощение нейтронов. Для ядерной геофизики, из всех реакций пог­ло­щения нейтрона веществом, наиболее важны: реакция радиационного захвата нейтрона ядром (n, γ); а также реакция (n, α) на изотопах 10B и 6Li. Эти реакции идут при любых энергиях нейтронов, но максимум сечения приходится на область низких энергий. Сечение реакции захвата в тепловой области убывает обратно пропорцио­нально энергии нейтрона, для тяже­лых элементов (Z > 45) в области промежуточных энергий существуют интервалы резкого роста сечения пог­лощения – резонансные интер­валы. Остальные реакции поглоще­ния, т.е. реакции типа (n, p) и (n, α) для большинства элементов, являются реакциями пороговыми и начинаются при энергии нейтронов более 2 – 5 Мэв. В резуль­тате поглощения нейтрона ядром, образуются изотопы, отли­чные от ядра-мишени, большинство из них являются радиоактивными. Спектр γ-излучения радиационного захвата нейтронов, т.е. число квантов, образующихся по реакции (n, γ) при поглощении 100 нейтронов, различен для разных элемен­тов. Это различие может быть использовано для определе­ния элементного состава породы. Необходимо отметить, что энергия γ-кван­тов, образующихся в результате радиационного захвата нейтронов, достаточ­но большая – до 8 Мэв, что облегчает регистрацию их в полевых и скважин­ных условиях.

Полное сечение и пробеги нейтронов в веществе. Нейтроны, испускае­мые источником и попавшие в горную породу, относительно быстро (за 10-4 ÷ 10-5 сек) замедляются в результате упругих и, частично, неупругих соуда­рений. Большая часть нейтронов избегает поглощения в области высоких энергий, и захватывается ядрами по реакции радиационного захвата (n, γ), уже имея очень малую энергию (0.025эв). Распределение нейтронов в среде определяется нейтронными свойствами среды, главным образом массой ядер и сечением различных процессов. Полное сечение равно сумме сечений эле­мен­тарных процессов: σt = σрз + σур + σнр ≈ σрз + σур, где индексы означают: t – суммарное сечение, ур – упругое рассеяние, нур – неупругое рассеяние, рз – радиационный захват. С целью уменьшения числа величин, характеризую­щих распределение нейтронов, вводится относительно небольшое число параметров, называемых нейтронными параметрами среды.

Макроскопическое сечение ∑ равно произведению микроскопического сечения процесса σ на плотность ядер (атомов) среды ma: ∑ = σma = σρNA / A, где NA –число Авогадро, ρ –плотность среды, А – атомный вес.

Замедляющая способность среды, равная произведению макроскопи­че­ского сечения рассеяния ∑Р на параметр замедления ξ. Чем больше замед­ля­ю­щая способность среды ξ∑Р, тем быстрее происходит замедление нейтронов.

Длина замедления нейтронов , где r2 – среднее значение квадрата расстояния между источником быстрых нейтронов и точкой замед­ле­ния до тепловой энергии.

Среднее время жизни тепловых нейтронов в среде τ = λз/v =1/v∑з, где ∑з – макросечение поглощения тепловых нейтронов, λз =1/∑з – путь нейтрона от точки замедления до точки поглощения (Lрз = 1/∑з), v – кинетическая ско­рость теплового нейтрона, равная 2200 м/с.

Полный пробег нейтрона в среде будет рассчитываться по формуле:

.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 2351; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.03 сек.