КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Отсутствие автокорреляции остаточных величин обеспечивает состоятельность и эффективность оценок коэффициентов регрессии
Относительно векторов объясняющих переменных (факторов) (столбцов матрицы Х). При использовании критериев Фишера и Стьюдента считают: остатки 1). Нарушение предпосылок относительно случайной составляющей Возможны следующие нарушения предпосылок, если 1) остатки 2) остатки 3) остатки
Рис. 2.2. Зависимость случайных остатков В этих случаях необходимо: - либо применять другую функцию, т.е. изменить спецификацию модели; - либо вводить дополнительную информацию и заново строить уравнение регрессии до тех пор, пока остатки Нарушение предпосылки 1 (Х- детерминированная матрица): - стохастическиефакторы, статистически не зависят от регрессионных остатков и оцениваемых параметров; - стохастические факторы, коррелированны с остатками; - стохастические факторы и результирующая переменные могут быть измерены только со случайными ошибками.
2). Факторы (объясняющие переменные) коррелированны с регрессионными остатками – проблема эндогенности (нарушается предпосылка М ( Хe ) =0 )
Причины эндогенности: - ошибки измерения значений факторов; - невключение в модель значимых факторов; - проблема «одновременного влияния». Предпосылка 2 ( М(ei) =0 ) относительно нулевой средней величины остатков означает, что Это выполнимо для линейных моделей и моделей, нелинейных относительно включаемых переменных.Предпосылка 2 – не нарушается никогда, если в регрессионное уравнение включен свободный член
При Вывод: включать свободный член. Предпосылка 3. В соответствии с третьей предпосылкой МНК требуется, чтобы дисперсия остатков была постоянной (гомоскедастичность). Это значит, что для каждого значения фактора
параметры регрессии не являются оценками с наименьшей дисперсией, т.е. – не эффективные, хотя и несмещенные. Смещенными будут стандартные ошибки и дисперсии, что влечет неверные выводы о значимости параметров. Тесты на гетероскедастичность: Уайта, тест ранговой корреляции Спирмена, тест Голдфелда—Квандта, тест Глейзера. Устранение гетероскедастичности – ОМНК. 1). Если, например,в уравнении
дисперсия связана с некоторой переменной zt зависимостью. D ( ut ) = D( 2). Перевести все переменные в логарифмическую форму (если они положительны).
Предпосылка 4 ( cov (ei, ej) = М(ei ej)=0 при ) -о независимости остатков. Нарушение предпосылки 4 называется автокорреляцией остатков. Автокорреляция остатков означает наличие корреляции между остатками текущих и предыдущих (последующих) наблюдений. Следствие – проверка статистической значимости оценок параметров ненадежна из-за невозможности достоверной оценки стандартных ошибок. Тесты на автокорреляцию: тест Дарбина – Уотсона, тест Бреуша – Годфри, тест Льюинга – Бокса. Устранение автокорреляции– ОМНК. Для применения ОМНК нужно специфицировать модель автокорреляции регрессионных остатков. В качестве такой модели используется AR(1) – авторегрессионный процесс первого порядка:
Предполагая, что структура модели постоянна, для периода t – 1 имеем:
Соблюдение третьей и четвертой предпосылок, т.е. отсутствие автокорреляции остатков (они распределены независимо друг от друга), является необходимым условием для получения состоятельных МНК - оценок параметров регрессии. Коэффициент корреляции между
т.е. по обычной формуле линейного коэффициента корреляции. Если этот коэффициент окажется существенно отличным от нуля, то остатки автокоррелированы и функция плотности вероятности При нарушении гомоскедастичности и наличии автокорреляции ошибок рекомендуется традиционный метод наименьших квадратов заменять обобщенным методом наименьших квадратов, т.е. методом ОМНК. Обобщенный метод наименьших квадратов применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии. Предпосылка 5 о нормальном распределении остатков позволяет проводить проверку параметров регрессии и корреляции с помощью
Дата добавления: 2014-01-07; Просмотров: 1329; Нарушение авторских прав?; Мы поможем в написании вашей работы! |