Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Электропроводность диэлектриков

Рекомендуемая литература

1. Деревянко А.П., Шабельникова Н.А. История России: Учебное пособие. 2-е изд., перераб. и доп. М.: ТК Велби, Изд-во Проспект, 2005.

2. История России в контексте мировых цивилизаций. Курс лекций / Под ред. В.В. Рябова, А.И. Токарева, В.В. Кириллова. М.: Жизнь и мысль, 2000.

3. История России с древнейших времен до конца ХХ века: Учебное пособие для студентов вузов. 4-е изд., стереотип. / Рук. авт. кол. А.А. Данилов. М.: Дрофа, 2002.

4. Кузьмин А.Г. История России с древнейших времен до 1618 г.: Учеб. для студ. высш. учеб. заведений: В 2 кн. М.: Гуманит. изд. центр ВЛАДОС, 2003. Кн. 1.

5. Орлов А.С., Георгиев В.А, Георгиева Н.Г., Сивохина Т.А. История России: Учебник, 2-е изд., перераб. и доп. М.: ТК Велби, Изд-во ПРОСПЕКТ, 2004.

6. Отечественная история: Учебное пособие для технических вузов / Под ред. Е.В. Бодровой, Т.Г. Поповой. М.: ИПР ВПО МАДИ (ГТУ), 2004.

7. Россия в мировой истории: Учебник для вузов. 2-е изд., испр. и доп. / Под общ. ред. В.С. Порохни. М.: Логос, 2003.

8. Удельная Русь: Методические рекомендации по курсу «Отечественная история» / Сост. Т.В. Агейчева. М.: РИО МГИЭМ, 2003.

 

 

Поляризационные процессы смещения упруго связанных зарядов создают токи смещения в диэлектриках. При электронной и ионной поляризациях токи смещения столь кратковременны, что их обычно не удается зафиксировать прибором.

Токи смещения замедленных видов поляризации, называются абсорбционными токами.

При постоянном напряжении токи смещения и абсорбции протекают только в момент коммутации цепи (включение и отключение напряжения), а при переменном напряжении эти токи присутствуют в течение всего времени нахождения материала под действием электрического поля.

Ток смещения имеет чисто реактивный (емкостный) характер и не нагревает диэлектрик. Ток смещения Iсм опережает приложенное напряжение U на 90°.

 

 

Рисунок 10

 

Ток абсорбции имеет активно-емкостный характер. Появление этого тока приводит к нагреву диэлектрика за счет того, что он имеет активную составляющую. Ток абсорбции Iабс опережает приложенное напряжение U на угол j.

 

Рисунок 11

После окончания переходного процесса токи смещения и абсорбции затухают и через диэлектрик протекает сквозной ток утечки. Принято считать, что токи смещения затухают в среднем за время до 15 с, а токи абсорбции за время до 60 с. Сквозной ток утечки через диэлектрик носит чисто активный характер (угол сдвига фаз между сквозным током утечки Iут и приложенным напряжением U равняется 0) и нагревает диэлектрик.

 

Рисунок 12

 

 

Таким образом, сквозной ток утечки через диэлектрик состоит из суммы токов переходного процесса (смещения и абсорбции) и сквозного тока через диэлектрик, протекающего через диэлектрик после завершения переходного процесса:

 

=++.

 

Зависимость сквозного тока утечки через диэлектрик в функции времени выглядит следующим образом.

 

Рисунок 13

 

При определении сопротивления изоляции пользуются несколькими методами: прямым и косвенным.

 

Косвенный метод – метод амперметра и вольтметра. Измеряют ток через 60 секунд с момента коммутации цепи и напряжение, а затем сопротивление изоляции определяют из закона Ома

=.

Прямой метод – измерение сопротивления изоляции сквозному току через диэлектрик омметром (верхнее значение измеряемого сопротивления до 106 Ом), мегаомметром (верхнее значение измеряемого сопротивления до 1010 Ом) или тераомметром (верхнее значение измеряемого сопротивления до 1014 Ом). Наибольшее распространение при измерении Rиз получили мегаомметры, предел измерения которых до 108-1010 Ом, а напряжение на разомкнутых зажимах равно 100-2500 В в зависимости от модификации прибора.

Как правило, электрическое сопротивление изоляции Rиз измеряется на выпрямленном токе. Начальное значение емкостного тока смещения Iсм зависит от приложенного напряжения и мощности источника питания. Ток абсорбции Iабс обусловлен перераспределением напряжения между разнородными слоями электрической изоляции в процессе ее заряда и разряда. Начальный ток абсорбции определяется значением приложенного напряжения, размерами и составом электроизоляционной конструкции, а также температурой, при которой производится измерение, и не зависит от загрязнения и степени увлажнения (кривая его затухания близка к гиперболе, см. рис. 13). Сквозной ток утечки через диэлектрик Iут характеризует качество электроизоляционной конструкции и ее состояние (загрязнение, степень увлажнения, наличие механических повреждений и последствий старения, температуру).

Поскольку ток абсорбции не зависит от степени увлажнения электроизоляционной конструкции, а его зависимость от температуры, размеров и конструкции изоляции примерно такая же, как и сквозного тока утечки через диэлектрик, то отношение электрического сопротивления R60, измеренного после затухания Iсм и Iабс, к значению R15, измеренного после затухания Iсм, характеризует степень увлажнения электрической изоляции и называется коэффициентом абсорбции:

 

,

 

где R60 – электрическое сопротивление, измеренное через 60 с после приложения напряжения;

R15 – то же, измеренное через 15 с.

 

У сухой электрической изоляции значение kабс близко к 1, а для увлажненной изоляции оно существенно возрастает и особенно зависит от повышения температуры окружающей среды. Если по результатам испытаний и проверок окажется, что электрическая изоляция электрооборудования увлажнена, необходимо выполнить ее сушку и последующие испытания во избежание пробоя и выхода ее из строя.

Если электрическое сопротивление изоляции Rиз измерять на переменном напряжении, то активная составляющая тока абсорбции Iабс.а (см. рис. 11) будет незатухающей, что обусловлено не устанавливающимися процессами поляризации на переменном напряжении и приведет к завышению значения сквозного тока утечки через диэлектрик и, как следствие, к занижению измеренного значения Rиз по сравнению с истинным значением.

Для твердых электроизоляционных материалов следует различать объемную и поверхностную проводимости.

Для их сравнительной оценки у разных материалов пользуются значениями удельного объемного сопротивления и удельного поверхностного сопротивления .

В системе СИ удельное объемное сопротивление равно объемному сопротивлению куба с ребром в 1 м, мысленно вырезанного из изоляционного материала и умноженному на один метр. При этом считается, что ток протекает от одной грани куба к противоположной.

Удельное поверхностное сопротивление – сопротивление, равное сопротивлению квадрата любых размеров, выделенного на поверхности материала. В этом случае ток в квадрате протекает от одной стороны квадрата к противоположной.

Если на плоский образец диэлектрика действует однородное поле, то значения и определяются по формулам:

 

=, ;

 

=, ,

 

где RV – объемное сопротивление образца;

– площадь электрода;

– толщина диэлектрика или расстояние между электродами;

Rs – поверхностное сопротивление образца;

– ширина электрода;

– расстояние между электродами.

 

С течением времени ток через твердые или жидкие диэлектрики может увеличиваться или уменьшаться.

 

 

Рисунок 14

 

1 – сопротивление изоляции уменьшается;

2 – сопротивление изоляции увеличивается.

 

Увеличение тока со временем говорит о том, что в процессе поляризации диэлектрика участвуют заряды, являющиеся структурными элементами его самого, что приводит к снижению сопротивления изоляции, увеличению разогрева диэлектрика, т.е. к его электрическому старению, что в дальнейшем может привести к пробою.

Уменьшение тока с течением времени связано с электрической очисткой изоляционного материала, т.е. любой диэлектрик содержит примеси, которые под действием напряжения диссоциируются на разноименно заряженные ионы, выносятся на электроды (анод и катод), где разряжаются. Это приводит к увеличению сопротивления изоляции и позволяет получать высококачественные изоляционные материалы.

 

<== предыдущая лекция | следующая лекция ==>
Удельные земли | Электропроводность газов
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 430; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.