The hypothesis testing problem (for the mean): make a provisional decision, based on the evidence at hand, whether a null hypothesis is true, or instead that some alternative hypothesis is true. That is, test
H0: E (Y) = mY,0 vs. H1: E (Y) > mY,0 (1-sided, >)
H0: E (Y) = mY,0 vs. H1: E (Y) < mY,0 (1-sided, <)
H0: E (Y) = mY,0 vs. H1: E (Y) ¹ mY,0 (2-sided)
Some terminology for testing statistical hypotheses:
p - value = probability of drawing a statistic (e.g. ) at least as adverse to the null as the value actually computed with your data, assuming that the null hypothesis is true.
The significance level of a test is a pre-specified probability of incorrectly rejecting the null, when the null is true.
Calculating the p-value based on :
p -value =
where is the value of actually observed (nonrandom)
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление