Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Потребность организма в жирах




Нормирование жира произ­водится в зависимости от возраста человека, характера его трудовой деятельности и климатических условий. В табл. 5 приведена суточная потребность в жирах взрослого трудоспо­собного населения.

Для людей молодого и среднего возраста соотношение белка и жира может быть 1: 1 или 1: 1,1. Потребность в жире зависит и от климатических условий. В северных клима­тических зонах количество жира может составлять 38— 40 % суточной калорийности, в средних — 33, в южных — 27—30 %.

Оптимальным в биологическом отношении является соот­ношение в пищевом рационе 70 % жира животного и 30 % жира рас­тительного происхождения. В зрелом и пожилом возрасте

 

Группы интенсивности труда Пол и возраст, лет Жиры, г
I Мужчины:  
  18—29
  30-39  
  40—59  
  Женщины:  
  18—29  
  30—39  
  40—59  
II Мужчины:  
  18-29
  30-39  
  40—59  
  Женщины:  
  18-29  
  30-39  
  40-59  
III Мужчины:  
  18—29
  30-39  
  40-59  
  Женщины:  
  18-29
  30-39  
  40-59  
IV Мужчины:  
  18-29
  30-39  
  40-59  
  Женщины:  
  18—29
  30—39  
V 40-59  
Мужчины:  
  18—29
  30—39  
  40-59  
  Женщины:  
     

соотношение может быть изменено в сторону увеличения удельного веса растительных жиров. Такое соотношение жиров по­зволяет обеспечить организм сбалансированным количеством жирных кислот, витаминами и жироподобными веществами.

 

 

Таблица 1. Характеристика предельных жирных кислот, входящих в состав пищевых жиров

 

Жирная кислота Молекулярная масса Температура плавления, °С
Масляная   -7,9
Стеариновая   +69,3
Капроновая   -1,5
Арахиновая   +74,9
Каприловая   + 16,7
Бегеновая   +79,7
Каприновая   +31,6
Лигноцериновая   +83,9
Миристиновая   +5З,9
Церотиновая   +87,7
Лауриновая   +44,2
Монтановая   +90,4
Пальмитиновая   +62,6
Мелисеиновая   +93,6

 

Жирная кислота Молекуляр-ная масса Температура плавления, °С
Масляная   -7,9
Стеариновая   +69,3
Капроновая   -1,5
Арахиновая   +74,9
Каприловая   + 16,7
Бегеновая   +79,7
Каприновая   +31,6
Лигноцериновая   +83,9
Миристиновая   +5З,9
Церотиновая   +87,7
Лауриновая   +44,2
Монтановая   +90,4
Пальмитиновая   +62,6
Мелисеиновая   +93,6

 

ислот

Жирная кислота Молекуляр-ная масса Температура плавления, °C
Олеиновая   -14
Линолевая   -7-3
Линоленовая   -11
Клупанодоновая   -12
Окцинолевая   -4-5
Арахидоновая   -4-5

Легкая окисляемость ненасыщенных жирных кислот служ

К полиненасыщенным жирным кислотам относятся в числе прочих и незаменимые жирные кислоты или эссенциальные жирные кислоты, получившие название витамина F, такие как линолевая (две двойные связи, положение первой – омега-6, то есть при шестом атоме углерода, отсчитывая от метильного конца) и линоленовая (три двойные связи, положение первой – омега-3, т. е. при третьем атоме углерода), эйкозапентаеновая (шесть двойных связей, положение первой – omega-3) и докозагексаеновая (пять двойных связей, положение первой – омега-3) кислоты.

Биологическая роль полиненасыщенных жиров и жирных кислот значительна. Как и все жирные кислоты, они являются компонентом клеточной мембраны и источником энергии. Однако наибольшее значение для организма они имеют, когда принимают участие в синтезе эйкозаноидов (простагландинов и лейкотриенов), действие которых очень многогранно и проявляется во всех системах организма, но особенно в иммунной, нервной и репродуктивной.

 

глицерофосфолипиды (глицерофосфатиды) — содержат остаток глицерина

фосфатидилхолин (лецитин)

фосфатидилэтаноламин (кефалин)

фосфатидилсерин

кардиолипин

плазмалоген(этаноламиновый плазмологен)

фосфосфинголипиды — содержат остаток сфингозина

сфингомиелины

фосфоинозитиды — содержат остаток инозитола

фосфатидилинозитол

 

Основной С. высших животных -холестерин (ф-ла la)широко распространен и у др. организмов. b-Ситостерин (ф-ла Iб)-один из наиб. распространенных С. растений; содержится в талловом масле. В сложных смесях С. растений могут содержаться также значит. кол-ва стигмастерина (I в) и брассикастерина (I г). Осн. источник последних-соотв. масло соевых бобов и семян рапса, где их содержание может превышать 20% от массы неомыляемой фракции. Типичный представитель С. морских организмов -криностерин (24-эпибрассикастерин, 22-дегидрокампестерин; ф-ла Iд)-осн. компонент С. мн. диатомовых водорослей. Главный С. дрожжей, грибов и ряда простейших-эргостерин (ф-ла II).

 

Углеводы являются источником энергии в организме: при сгорании 1 г углеводов образуется 3,75 ккал. Они входят в состав клеток и тканей, ферментов, некоторых гормонов, факторов свертывания крови и др. Углеводы делятся на моносахариды (глюкоза и фруктоза), дисахариды (сахароза и лактоза) и полисахариды (крахмал, клетчатка, пектин, гликоген). Быстрее всех всасываются глюкоза и фруктоза — содержатся во фруктах, ягодах, меде. Основными источниками сахарозы являются сахар, кондитерские изделия, свекла, морковь и др. Лактоза находится в молочных продуктах. В кишечнике сахароза при помощи ферментов распадается на глюкозу и фруктозу, а лактоза — на глюкозу и галактозу. Наиболее высокое содержание крахмала — в крупах, макаронах, хлебе, картофеле, бобовых. В кишечнике он медленно переваривается и распадается до глюкозы. Клетчатка почти не всасывается, но участвует в формировании каловых масс, улучшает двигательную функцию кишечника и предупреждает развитие запоров, повышает выведение холестерина из организма, улучшает выделение желчи. Клетчатка содержится в овощах, фруктах, ягодах, бобовых, крупах (овсяной, гречневой), хлебе из муки грубого помола. Пектин обладает адсорбирующими свойствами и поэтому применяется при лечении поносов, для профилактики хронических интоксикаций, назначается лицам, контактирующим с солями тяжелых металлов. Пектином богаты овощи, фрукты и ягоды. В мышцах и печени содержится около 1,5 кг гликогена, который является резервом углеводов в организме. При углеводной недостаточности эти запасы быстро расходуются, а в дальнейшем углеводы в организме синтезируются из белков и жиров, что способствует накоплению в крови недоокисленных продуктов обмена и развитию ацидоза. Потребность в углеводах определяется характером выполняемой работы и составляет 300—500 г в сутки, из них 20—30% —легкоусвояемые (сахар, варенье, мед, сироп и т. д.). В рационе пожилых людей количество углеводов не должно превышать 250—300 г в сутки, из них 15—20% легкоусвояемых. При ожирении и других заболеваниях углеводы в диете ограничиваются, но их ограничение должно происходить постепенно, чтобы организм мог приспособиться к новым условиям обмена. Начинать следует с 200—250 г в сутки в течение 7— 10 дней, затем довести это количество до 100 г. Недостаток в питании углеводов в течение длительного времени или резкое их ограничение нарушает их синтез из белков и жиров, что способствует снижению сахара в крови, понижению умственной и физической работоспособности, появлению слабости, сонливости, головокружения, головной боли, чувства голода, дрожи в руках. Эти явления исчезают после приема сахара или другой сладкой пищи. Вредным для организма является и избыток углеводов в питании, особенно легкоусвояемых. Он способствует развитию атеросклероза, сердечно-сосудистых заболеваний, сахарного диабета, ожирения, кариеса зубов.

Подробнее: http://www.mirzdorovia.com.ua/uglevodi.html

 

УГЛЕВОДЫ (сахара), обширная группа полигидроксикарбонильных соед., входящих в состав всех живых организмов; к углеводам относят также мн. производные, получаемые при хим. Mодификации этих соед. путем окисления, восстановления или введения разл. заместителей.

Термин "углеводы" возник потому, что первые известные представители углеводов по составу отвечали ф-ле CmH2nOn (угле-род+вода); впоследствии были обнаружены природные углеводы с др. элементным составом.

Классификация и распространение. Углеводы принято делить на моносахариды, олигосахариды и полисахариды.

Моносахариды

К наиб, обычным и распространенным в природе моноса-харидам относят D-глюкозу, D-галактозу, D-маннозу, D-фрук-тозу, D-ксилозу, L-арабинозу и D-рибозу.

За исключением D-глюкозы и D-фруктозы своб. моносахариды встречаются в природе редко. Обычно они входят в состав разнообразных гликозидов, олиго- и полисахаридов и м. б. получены из них после кислотного гидролиза. Разработаны многочисл. методы хим. синтеза редких моносахаридов исходя из более доступных.

Олигосахариды содержат в своем составе от 2 до 10-20 моносахаридных остатков, связанных гликозидными связями. Наиб, распространеныдисахариды, выполняющие ф-цию запасных B-B: сахароза в растениях, трегалоза в насекомых и грибах, лактоза в молоке млекопитающих. Известны многочисл. гликозиды олигосахаридов, к к-рым относят разл. физиологически активные в-ва, напр, гликозиды сердечные, нек-рые сапонины (в растениях), мн. антибиотики (в грибах и бактериях), гликолипиды.

Биологическая роль. Ф-ции углеводов в живых организмах чрезвычайно многообразны. В растениях моносахариды являются первичными продуктами фотосинтеза и служат исходными соед. для биосинтеза гликозидов и полисахаридов, а также др. классов B-B (аминокислот, жирных K-T,фенолов и др.). Эти превращения осуществляются ферментами, субстратами для к-рых служат, как правило, богатые энергией фос-форилир. производные Сахаров, гл. обр. нуклеозиддифосфат-сахара.

Углеводы запасаются в растениях (в виде крахмала), животных, бактериях и грибах (в виде гликогена), где служат энергетич. резервом. Источником энергии являются р-ции расщепления глюкозы, образующейся из этих полисахаридов, по гликоли-тич. или окислит. пути (см. Гликолиз). В видегликозидов в растениях и животных осуществляется транспорт разл. метаболитов. Полисахариды и более сложные углеводсодержащие полимерывыполняют в живых организмах опорные ф-ции. Жесткая клеточная стенка у высших растений представляет собой сложный комплекс из целлюлозы,гемицеллюлоз и пектинов. Армирующим полимером в клеточной стенке бактерий служат пептидогликаны (муреины), а в клеточной стенке грибов и наружных покровах членистоногих - хитин. В организме животных опорные ф-ции выполняют протео-гликаны соединит, ткани, углеводная частьмолекул к-рых представлена сульфатир. мукополисахаридами. Эти в-ва участвуют в обеспечении специфич. физ.-хим. CB-B таких тканей, как кости, хрящи, сухожилия, кожа. Будучи гидрофильными полианионами, эти полисахариды способствуют также поддержанию водного баланса и избират. ионной проницаемости клеток. Аналогичные ф-ции в морских многоклеточных водорослях выполняют сульфатир. галактаны (красные водоросли) или более сложные сульфатир. гетерополисахари-ды (бурые и зеленые водоросли); в растущих и сочных тканях высших растений эту ф-цию выполняют пектины.

Особенно ответственна роль сложных углеводов в образовании клеточных пов-стей и мембран и придании им специфич. св-в. Так, гликолипиды - важнейшие компоненты мембран нервных клеток и оболочек эритроцитов, а липополисахариды -наружной оболочки грамотрицат. бактерий. Углеводы клеточной пов-сти часто определяют специфичность иммунологич. р-ций (групповые в-ва крови, бактериальные антигены) и взаимод.клеток с вирусами. Углеводные структуры принимают участие и в др. высокоспецифич. явлениях клеточного взаимод., таких, как оплодотворение, узнавание клеток при тканевой дифференциации, отторжение чужеродных тканей и т. д.

Практическое использование. Углеводы составляют главную часть пищ. рациона человека, в связи с чем широко используются в пищ. и кондитерской пром-сти (крахмал, сахароза и др.). Кроме того, в пищ. технологии применяют структурир. в-ва полисахаридной природы, не имеющие сами по себе пищ. ценности,- гелеобразователи, загустители, стабилизаторы суспензий и эмульсий (альгинаты, агар, пектины, растит. галактоманнаны и др.).

Превращения моносахаридов при спиртовом брожении лежат в основе процессов получения этанола, пивоварения, хлебопечения; др. видыброжения позволяют получать из Сахаров биотехнол. методами глицерин, молочную, лимонную, глюконовую к-ты и мн. др. в-ва.

Глюкозу, аскорбиновую к-ту, углеводсодержащие антибиотики, гепарин широко применяют в медицине. Целлюлоза служит основой для получениявискозного волокна, бумаги, нек-рых пластмасс, BB и др. Сахарозу и растит, полисахари-ды рассматривают как перспективное возобновляемое сырье, способное в будущем заменить нефть в пром. орг. синтезе. Моносахариды используют в качестве доступных хиральных исходных соед. для синтеза сложных прир. B-B неуглеводной природы.




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 554; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.