КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Корекція цифрових систем
Раніше розглядалися основні поняття про корекцію імпульсних систем, для здійснення якої є більш широкі можливості порівняно з безперервними САК, оскільки коректувальні пристрої можуть бути безперервними або дискретними. Одним з шляхів підвищення якості процесу керування ЦС є застосування цифрових коректуючих пристроїв або цифрових коректуючих фільтрів. Ці фільтри можуть бути диференційними та інтегруючими. Диференційний фільтр першого порядку реалізує різницеве рівняння: (3.68) Це відповідає наближеному різницевому виразу похідної від вхідної величини. Передаточна функція диференціювального фільтра першого порядку: (3.69) Для практичної реалізації цю функцію перетворюють до вигляду: (3.70) Для більш точної реалізації похідної від вхідної величини передаточну функцію подають у такому вигляді: (3.71) де m – скінчена кількість членів суми, що вибирається з бажаної точності реалізації похідної. Аналогічно будується диференційний цифровий фільтр будь-якого порядку r з передаточною функцією: (3.72) Такі фільтри дають суттєвий ефект як при послідовному включенні, так і в місцевих зворотних зв’язках. Вони також дозволяють забезпечувати інваріантність за зовнішнім вхідним впливом. Інтегруючий цифровий фільтр першого порядку імітує інтеграл у вигляді наближеної рівності: (3.73) що відповідає наближеному інтегруванню за методом прямокутників. Передаточна функція такого фільтра має вигляд: (3.74) Оскільки розв’язок різницевого рівняння (3.73) дає: (3.75) то такий фільтр називають накопичувачем. Існує також інший вираз передаточної функції інтегруючого фільтра першого порядку, який відповідає інтегруванню за методом трапецій: (3.76) Для цифрового інтегруючого фільтра другого порядку (при інтегруванні за правилом Симпсона) передаточна функція має вигляд: (3.77) Послідовне включення інтегруючого фільтра підвищує порядок астатизму системи, тобто її точність. Однак, як і для безперервних систем, при цьому можливе погіршення стійкості системи. Тому застосовують ізодромну корекцію. Передаточна функція у цьому разі має вигляд: (3.78) де передаточна функція відповідає (3.74) або (3.76), а значення k дорівнює сталій часу компенсуючого диференціювального пристрою першого порядку. Існують ще цифрові фільтри іншого типу, які забезпечують бажані показники якості процесів керування в ЦС при тих чи інших зовнішніх впливах.
Дата добавления: 2014-01-07; Просмотров: 270; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |