КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Конспект лекций 6 страница
По виду вяжущего бетоны разделяют на: цементные (наиболее распространенные), силикатные (известково-кремнеземистые), гипсовые, смешанные (цементно-известковые, известково-шлаковые и т.п.), специальные - применяемые при наличии особых требований (жаростойкости, химической стойкости и др.). По виду заполнителя различают бетоны на: плотных, пористых, специальных заполнителях, удовлетворяющих специальным требованиям (защиты от излучений, жаростойкости, химической стойкости и т.п.). В правильно подобранной бетонной смеси расход цемента составляет 8-15%, а заполнителей - 80-85% (по массе). Поэтому в виде заполнителей применяют местные каменные материалы: песок, гравий, щебень, а также побочные продукты промышленности (например, дробленные и гранулированные металлургические шлаки), характеризующиеся сравнительно невысоким уровнем издержек производства. В зависимости от средней плотности бетоны классифицируют особо тяжелые, тяжелые, облегченные, легкие, особо легкие. Особо тяжелые - плотностью более 2500 кг/м, изготовляемые на особо тяжелых заполнителях (из магнетита, барита, чугунного скрапа и др.), применяют для специальных защитных конструкций и утяжелителей. Тяжелые - плотностью 2200…2500 кг/м3, применяют во всех несущих конструкциях. Облегченные - плотностью 1800…2200 кг/м3 применяют преимущественно в несущих конструкциях. Легкие - плотностью 500…1800 кг/м3, к ним относятся: а) легкие бетоны на пористых природных и искусственных заполнителях; б) ячеистые бетоны (газобетон и пенобетон) из смеси вяжущего, воды, тонкодисперсного кремнеземистого компонента и порообразователя; в) крупнопористые (беспесчаные) бетоны на плотном или пористом крупном заполнителе, без мелкого заполнителя. Особо легкие (ячеистые и на пористых заполнителях) - плотностью менее 500 кг/м3, используемые в качестве теплоизоляции. Легкие бетоны менее теплопроводны по сравнению с тяжелыми, поэтому их применяют преимущественно в наружных ограждающих конструкциях. В несущих конструкциях используют более плотные и прочные легкие бетоны (на пористых заполнителях и ячеистые) плотностью 1200-1800 кг/м3. Следовательно, плотность бетонов изменяется в широких пределах: от 400 до 4500 кг/м3 и более. Поэтому и пористость бетонов может быть очень большой у ячеистых теплоизоляционных бетонов (70…80%) и незначительной у плотных высокопрочных и гидротехнических бетонов (8…10%).
7.2.Технология По способу изготовления конструкции подразделяют на монолитные и сборные. При бетонировании монолитных конструкций (фундаментов, стен, перекрытий, гидротехнических сооружений, дорожных покрытий) бетонную смесь приготавливают на строительной площадке или заводе (товарный бетон) и транспортируют к месту укладки, где бетон твердеет в естественных условиях. Сборные конструкции (балки, плиты, колонны, панели, фермы и т.д.) получают на специализированных заводах (ЖБИ, ЖБК, КСМ), откуда их транспортируют на строительную площадку для монтажа. Б етонные смеси и их состав подбирают с использованием графиков и таблиц на основании следующих данных: условий эксплуатации будущей конструкции; показателей качества используемых компонентов; проектируемого класса бетона; требуемой подвижности бетонной смеси, которую выбирают в зависимости от размеров бетонируемой конструкции, густоты армирования и способа уплотнения. Правильность выбора бетона проверяют в строительных лабораториях. Для снижения усадочных деформаций при твердении, ползучести и для регулирования свойств искусственного камня в красочные и мастичные составы вводят минеральные и органические компоненты в виде тонкомолотого порошка (наполнителя), в строительные растворы и бетоны различного назначения — зернистые материалы более крупной фракции. При изготовлении бетонов используют также природную песчано-гравийную смесь с содержанием песка 25...40 %. На долю заполнителей в растворах и бетонах приходится до 80 % объема. Их введением можно значительно изменить свойства искусственного камня: повысить прочность, используя плотные горные породы; снизить плотность и теплопроводность за счет применения пористого заполнителя; придать бетонам и растворам декоративность заполнителями из природного камня. Классификация заполнителей проводится по следующим показателям: • размеру зерен (мелкий — до 5 мм, крупный — 5...70 мм); • форме зерен (угловатая — щебень, окатанная — гравий, волокнистая — древесные отходы, асбест, синтетическая минеральная и стальная фибра); • структуре (при общей пористости менее 10 % — плотные, более 10 % — пористые); • насыпной плотности, граница между тяжелым или легким крупным заполнителем равна 1000 кг/м3, для мелкого заполнителя— 1200 кг/м3). Качество заполнителей оценивают по зерновому или гранулометрическому составу, насыпной плотности, пустотности, содержанию вредных примесей и влажности. Кроме того, для крупного заполнителя определяют прочность и, в зависимости от условий работы будущей конструкции, такие специальные свойства, как морозо-, жаро- и кислотостойкость и т.д. Гранулометрический состав является одной из важнейших характеристик, влияющих на свойства бетона. Так, для получения высокомарочного плотного бетона используют разнофракционный тяжелый заполнитель с минимальной пустотностью. Однофракционный плотный крупный заполнитель при отсутствии песка и ограничении расхода цемента применяют для получения крупнопористого легкого бетона. Качество щебня снижают пластинчатые (лещадные) и игловатые зерна, которые ухудшают удобоукладываемость, транспортировку бетонной смеси и снижают прочность бетона. Для керамзита нормируемой вредной примесью являются зерна с отбитостью более 1/3 объема, обладающие низкой прочностью и высоким водопоглощением. Для всех видов заполнителей ограничено содержание пылевидных частиц, снижающих прочность сцепления поверхности заполнителя с цементным камнем и повышающих водопотребность смеси, что приводит к уменьшению прочности и морозостойкости бетона. Для регулирования свойств бетонной (растворной) смеси и бетона (раствора) вводят химические добавки, количество которых по сухому веществу назначают в процентах от расхода цемента. Добавки могут быть твердыми и в виде водных растворов определенной концентрации, а в зависимости от количества входящих веществ — однокомпонентными и комплексными. В строительстве принята основная классификация добавок по эффекту действия: • регулирующие гидратацию цемента (ускорители и замедли • улучшающие пластичные свойства цементных смесей (пластификаторы и суперпластификаторы); • изменяющие поровую структуру искусственного камня (воздухововлекающие, пено- и газообразующие, уплотняющие); • ингибиторы коррозии стальной арматуры в бетоне; • биоцидные, повышающие стойкость материалов по отношению к микроорганизмам. Приготовление бетонной смеси включает подготовку материалов, их дозирование и перемешивание в специальных бетоносмесителях. Полученная бетонная смесь должна обладать связностью, однородностью и удобоукладываемостью. Контроль удобоукладываемости проводят по двум показателям: подвижности и жесткости. Подвижность определяют для пластичных бетонных смесей, замеряя осадку под собственным весом отформованного усеченного стандартного конуса. В зависимости от величины осадки конуса (ОК) различают низкопластичные смеси (OK 1...9 см), пластичные (OK 10...20 см) и литые (ОК > 20 см). При ОК < 1 см удобоукладываемость характеризуется жесткостью. Жесткость — динамический показатель вязкости бетонной смеси, которая определяется при механическом воздействии вибрации, под действием которой отформованная в виде усеченного стандартного конуса бетонная смесь равномерно заполняет определенный объем. Если необходимое время воздействия составляет от 5 до 40 с — смесь жесткая, более 40 с — сверхжесткая. Для получения бетонов высоких марок используют бетонные смеси с низким водосодержанием. Их качественную удобоукладываемость обеспечивают за счет увеличения крупности разнофракционных заполнителей, отсутствия лещадных и игловатых зерен в щебне, введения добавок пластификаторов и суперпластификаторов. Формование изделий и конструкций производят путём подачи бетонной смеси в очищенную и смазанную форму или опалубку, в которую, согласно проекту, устанавливают арматуру. После заполнения объема производят уплотнение бетонной смеси с целью равномерного распределения и придания заданных формы и размеров. Основные методы уплотнения связаны с вибрационным воздействием, под влиянием которого проявляются тиксотропные свойства смеси — способность снижать вязкость (разжижаться) в результате нарушения сцепления между компонентами под влиянием вибрации и восстанавливать структурную целостность и прочность после снятия механического воздействия. При бетонировании монолитных конструкций используют пластичные смеси, которые уплотняют глубинными и поверхностными вибраторами. Сборные железобетонные конструкции выполняют из бетона высоких классов, поэтому для уплотнения сверхжестких и жестких бетонных смесей применяют более массированное воздействие с использованием пригруза: вибропрокат и виброштампование. Для низкопластичных и пластичных смесей используют два метода: вибрационный и ударный, основанный на циклическом подъеме и падении с заданной высоты формы со смесью. Литые смеси заполняют форму под действием собственной массы (наливной метод). С целью ускорения твердения и повышения прочности используют дополнительное вибровакуумирование, позволяющее отвести часть воды из бетона и тем самым повысить плотность и жёсткость уложенной бетонной смеси и прочность бетона. Для изготовления полых изделий (труб, колонн) применяют центробежный способ формовки: подаваемая бетонная смесь под действием центробежной силы равномерно распределяется по внутренней поверхности вращающейся формы и уплотняется. Для защиты бетонной поверхности и производства прочных тонкостенных конструкций используют набивной метод, предусматривающий подачу бетонной смеси в форму или на защищаемую поверхность конструкции под давлением (торкрет-бетон). К бетонным дорожным изделиям (бордюрные камни, тротуарные плитки) предъявляют высокие требования по износостойкости и морозостойкости. Для обеспечения заданных свойств их изготавливают из сверхжестких бетонных смесей или из сухих, укладываемых и уплотняемых прессованием в сухом состоянии с последующим минимальным водонасыщением паром или раствором химических добавок. Так получают изделия прочностью до 80 МПа, водопоглощением менее 2 %, морозостойкостью более F1000 и низкой истираемостью. После формовки бетон твердеет и приобретает проектируемую прочность искусственного камня. Режим твердения зависит от способа получения конструкций: монолитные — в естественных условиях, или при термосном выдерживание в тёплой опалубке, или при искусственном прогреве; сборные — с использованием термовлажностной обработки при нормальном и повышенном давлении в автоклавах. В зависимости от климатических условий монолитные конструкции твердеют при низкой положительной и отрицательной температурах, положительной оптимальной (20 ± 5 °С) и при высокой температуре и низкой влажности. Так как интенсивность процесса твердения (гидратации) зависит от температурно-влажностных условий, то каждый из режимов имеет свои технологические особенности. При отрицательных температурах используют быстротвердеющие цементы, противоморозные добавки и искусственные способы нагрева бетона в конструкции. Основная задача состоит в обеспечение набора бетоном «критической» прочности (25...50 % марочной), которая позволит воспринимать последующее замораживание при понижении температуры без разрушения. При изготовлении сборных железобетонных конструкций ускорение набора прочности достигается применением термообработки в атмосфере насыщенного пара. При работе с бетоном на основе разновидностей портландцемента используют термовлажностную обработку (ТВО) при нормальном давлении и температуре до 95 °С; для силикатных бетонов на известково-кремнеземистом вяжущем— автоклавную обработку при температуре от 175°С до 250°С и давлении соответственно от 0.9 до 1,6 МПа.
7.3.. Применение К тяжелым бетонам относят конструкционные бетоны на песке, гравии или щебне из тяжелых горных пород, применяют во всех несущих конструкциях, эксплуатируют при систематическом воздействии температуры от +50°С до -70°С, а также бетоны специального назначения. В состав мелкозернистых бетонов входят минеральное вяжущее и мелкий заполнитель — песок определенной крупности. Эти бетоны обладают однородностью свойств, повышенной водонепроницаемостью и морозостойкостью, прочностью на изгиб и растяжение. Мелкозернистые цементные бетоны используют при получении методом объемного сухого вибропрессования труб, дорожных покрытий, тротуарных плит и бортовых камней, а также таких тонкостенных конструкций, как перегородки и плиты перекрытий. Используя сетчатое армирование, на их основе возводят пространственные армоцементные конструкции — оболочки сложной конфигурации для покрытия больших площадей. Плотные силикатные мелкозернистые бетоны используют при производстве таких несущих конструкций, как колонны, балки, плиты перекрытия. Легкие бетоны плотностью менее 2000 кг/м3 можно получить за счет использования пористых заполнителей (легкий бетон), поризации цементного камня (поризованный бетон), введения газо- и пенообразующих добавок при отсутствии заполнителя (ячеистый бетон), а также применением только однофракционного крупного заполнителя при ограниченном расходе цемента (крупнопористый бетон). Вид и назначение легкого бетона определяют двумя показателями: пределом прочности на осевое сжатие в проектном возрасте и средней плотностью. В зависимости от плотности легкие бетоны подразделяют на конструкционные, из которых изготавливают плиты перекрытий; конструкционно-теплоизоляционные, используемые в производстве ограждающих стеновых конструкций, плит покрытий, и теплоизоляционные, основное назначение которых — теплозащита зданий и сооружений, трубопроводов и технологического оборудования. Для приготовления легких бетонов с плотной межзерновой структурой, пористость которой не превышает 7 %, используют все виды минеральных вяжущих и пористые заполнители. Разновидностью легкого бетона является поризованный цементный бетон. Его получают путем насыщения газом (воздухом) цементного камня или цементно-песчаного раствора, заполняющего пустоты между крупным пористым заполнителем. Прочность поризованных бетонов в зависимости от объема пор (7...25 %) и пористости применяемого заполнителя составляет 5...10 МПа, плотность — 700... 1400 кг/м3. Ячеистый бетон, содержащий по всему объему до 85 % пор размером 1...1.5 мкм, является разновидностью поризованного бетона, в котором отсутствует крупный заполнитель. Ячеистые бетоны получают в результате твердения вспученной порообразователем смеси минерального вяжущего, тонкомолотого кремнеземистого наполнителя и воды. Название ячеистого бетона зависит от вида применяемого вяжущего (цемент, гипс, известково-кремнеземистое, шлаковое), характера вводимых добавок (пено-, газообразующие) и кремнеземистого мелкого наполнителя (молотый кварцевый песок или зола). Например, газосиликат, пенозолобетон, газозолошлакобетон. По условию твердения ячеистые бетоны могут быть автоклавные (силикатные) и неавтоклавные, твердеющие при термовлажностной обработке (цементные) или в естественных условиях (гипсовые). В состав беспесчаного крупнопористого бетона вводят гравий или щебень определенной крупности, портландцемент и воду. Отсутствие песка и ограниченный расход цемента позволяют получить пористый бетон низкой теплопроводности. Из крупнопористого бетона на плотном заполнителе возводят монолитные наружные стены зданий, изготовляют крупные стеновые блоки, которые необходимо оштукатуривать с двух сторон, чтобы исключить продуваемость. Крупнопористый бетон на пористом заполнителе имеет небольшую среднюю плотность, его используют для получения теплоизоляционных изделий. К разновидностям легкого бетона относится опилкобетон и арболит, которые могут быть использован как для монолитного, так и для блочного возведения зданий жилого, гражданского и сельскохозяйственного назначения высотой до пяти этажей. В производстве мелких стеновых камней, блоков и крупноразмерных панелей широкое применение нашел один из видов легкого бетона — гипсобетон, обладающий огнестойкостью, легкостью, хорошими тепло- и звукоизоляционными свойствами. Снижение средней плотности и улучшение акустических свойств достигается применением пористых заполнителей и пенообразующих добавок. Для повышения прочности на изгиб и уменьшения хрупкости в пластичную массу вводят волокнистые компоненты: древесные или синтетические волокна, измельченную макулатуру. Вследствие высокой пористости изделий стальную арматуру защищают от коррозии лакокрасочными составами на основе битума или полимерных смол. На основе портландцемента и асбестового волокна выпускают специальный класс тонкостенных изделий — асбестоцементные плоские и волнистые листы, экструзионные стеновые панели и перегородки, плиты перекрытий и покрытий, трубы и др. Асбестоцементными называют искусственные каменные материалы, полученные затвердеванием отформованных изделий, состоящих из смеси цемента, асбеста и воды. Специальный бездобавочный (шиферный) портландцемент (до 85 %) должен иметь заданный минералогический состав и тонкость помола, обеспечивающие замедленное схватывание и быстрый набор прочности. Тонковолокнистый минеральный заполнитель — асбест (до 15 %) вследствие дисперсного объемного армирования повышает прочность изделий на удар, изгиб и растяжение. Применение этого заполнителя обеспечивает также огнестойкость, водонепроницаемость, тепло- и электрозащитные свойства. В зависимости от вида производимых материалов и условий их эксплуатации применяют мокрый (влажность до 85 %) и сухой (влажность до 18 %) способы производства. При мокром изделия получают литьем на круглосетчатых машинах с использованием вакуумирования (водо-, нефте- и газопроводные трубы, плоские и профилированные кровельные и облицовочные листы), при сухом — экструзией производят крупноразмерные листы (до 6 м), применяемые для изготовления стеновых, кровельных многослойных панелей; прессованием получают облицовочные износостойкие плитки для пола и стен.
7.4. Контроль качества Бетон изготавливают в соответствии с классом бетона (В) с гарантией производителями прочности на осевое сжатие в нормируемом проектном возрасте. На заводе при производстве сборных конструкций контроль прочности бетона проводят после ТВО и последующего твердения в естественных условиях в течение 28 суток, когда бетон должен набрать гарантированную прочность. На строительной площадке прочность бетона определяют перед нагружением конструкции и проектную после 28 суток естественного твердения. При возведении массивных монолитных сооружений на медленно твердеющих цементах (пуццолановом и шлакопортландцементе) контроль прочности проводят через 60, 90 и 180 суток твердения. Определение прочности бетона при получении и возведении конструкций чаще всего проводят путем испытания на прессе специально отформованных образцов-спутников кубической формы определенного размера, твердевших вместе с бетонируемой конструкцией. Если оценивают несущую способность эксплуатируемых конструкций, то испытания проводят на выбуренных и выпиленных из бетонного массива образцах (кубах, цилиндрах) или используют неразрушающие методы контроля. Наиболее распространенными являются механический склерометический метод (по величине отскока) и ультразвуковой. Под действием на бетон механических нагрузок в зависимости от их величины, направления и времени действия в бетоне возникают деформации, сначала упругие, а в случае превышения напряжения остаточные (пластические), сопровождаемые появлением микротрещин, приводящих в дальнейшем к разрушению бетона. Наиболее опасны для хрупких материалов, каким является бетон, растягивающие напряжения и деформации в изгибаемой зоне конструкций, в которую для обеспечения надежной эксплуатации укладывают металлическую или стеклопластиковую проволочную, прутковую или канатную арматуру, а также, для повышения прочности бетона на изгиб по всему объему, примененяют дисперсное армирование путем введения в бетонную смесь коротких (10...50 мм) и прочных тонких (0,1...0,5 мм) металлических, минеральных, полимерных, волокон (фибр). Ф ибробетон —также имеет повышенные показатели прочности на удар, истирание и морозостойкость. При изготовлении конструкций, условия работы которых связаны с действием больших растягивающих и изгибающих нагрузок (пролетные строения мостов, корпуса реакторов, телебашни и т.д.), применяют трещиностойкий преднапряженный железобетон, в котором наиболее полно используются несущие возможности бетона и арматуры. Бетон с аналогичными свойствами можно получить также за счет применения самонапрягающего цемента специально подобранного состава. Сжимающие напряжения в бетоне, ограниченном замкнутым объемом формы, возникают в результате образования крупнокристаллических продуктов гидратации цемента, приводящих к значительному расширению цементного камня. Марку по самонапряжению обозначают Sp и числом, выражающим значение самонапряжения в МПа, например Sp2,0. В обычных конструкциях (балки, перекрытия и т.д.) преднапряжение позволяет снизить материалоемкость и массу изделий, повысить их трещиностойкость и долговечность. Возникающие в бетоне деформации являются следствием не только действия нагрузок, но и изменения температурно-влажностных условий эксплуатации. Наиболее чувствительным к ним является цементный камень, содержащий минералы как в кристаллическом, так и в менее устойчивом аморфном стеклообразном состоянии. Так называемые собственные деформации включают усадку при гидратации цемента (химическая контракция) и усадку в результате снижения влажности окружающей среды. Уменьшить собственные деформации можно за счет снижения объема цементного камня в бетоне, увеличения расхода крупного недеформируемого заполнителя и обеспечения влажного режима твердения. Температурные деформации в бетоне возникают из-за разных коэффициентов температурного расширения его составляющих. Колебания температуры в диапазоне 0...50°С не вызывают в сухом бетоне значительных деформаций, однако при наличии влаги в порах приводят к микроразрушениям. Рост деформаций при отрицательной температуре преимущественно связан с льдообразованием, сопровождаемым увеличением объема льда. При нагревании бетона во время ТВО, в связи с переходом воды в пар и увеличением его объема, происходит вспучивание недостаточно прочного «сырого» бетона. Для предотвращения деформаций в первом случае применяют технологические приемы по повышению морозостойкости бетона (увеличение плотности, создание микропористой замкнутой структуры). Во втором, касающемся в большей степени технологии получения сборного железобетона, используют мягкие режимы с медленным нарастанием и снижением температуры. Для уменьшения влияния температурных деформаций в массивных бетонных конструкциях и в конструкциях с большим модулем поверхности (дорожные покрытия) устраивают температурные швы, которые заполняют герметизирующими упругими прокладками или мастиками, воспринимающими и гасящими возникающие деформации. Повысить морозостойкость бетона можно или за счет повышения его плотности и снижения объема открытых, капиллярных пор, или путем увеличения количества замкнутых воздухонаполненных резервных пор (до 4...6 %), которые уменьшают давление от замерзающей воды. Для таких изделий, как напорные железобетонные трубы, емкости для хранения жидких продуктов, гидротехнические сооружения (дамбы, мосты), условия эксплуатации которых связаны с односторонним действием жидкостей под давлением, водопроницаемость является важнейшим свойством бетона. Основное влияние на нее оказывают показатели структуры: общий объем пор, содержание замкнутых и капиллярных пор, их форма и размер. Водоотделение и недоуплотнение бетонной смеси, появление микротрещин вследствие усадки бетона из-за действия нагрузки, попеременного увлажнения с последующим замораживанием или высыханием могут существенно снизить непроницаемость бетона. Повысить водонепроницаемость бетона можно за счет: • использования многофракционного заполнителя, обеспечивающего его плотную упаковку с минимальным объемом пустот, которые для обеспечения монолитности заполняются цементным камнем; • сокращения расхода воды в сочетании с применением добавок — пластификаторов, суперпластификаторов — и интенсивным способом уплотнения бетонной смеси; • использования расширяющегося цемента и уплотняющих добавок; • пропитки и защиты бетонной поверхности полимерными составами.
7.5. Коррозионная стойкость. От состава и характера структуры бетона зависит его коррозионная стойкость, так как чем больше пористость материала, тем глубже проникают жидкие и газообразные агрессивные среды, вызывая серьезные разрушения и приводя к потере несущей способности конструкции. Агрессивные среды могут быть в жидком, газообразном и твердом агрегатном состоянии. Степень агрессивности по отношению к бетонным и железобетонным конструкциям для жидких сред определяется наличием и концентрацией агрессивных по отношению к бетону и арматуре веществ, температурой, величиной напора и скоростью движения жидкости по отношению к бетонной поверхности. Газовые и твердые среды агрессивны только при наличии на поверхности конструкции слоя влаги вследствие гигроскопичности (гидрофильности) бетона и повышенной влажности воздуха. Поэтому степень их агрессивности оценивают по составу, растворимости в воде, концентрации в газовоздушной среде, гигроскопичности твердого продукта, влажности и температуре окружающего воздуха. Агрессивность воздействия на бетон оценивают специальными нормами по антикоррозионной защите строительных конструкций. В зависимости от глубины разрушения бетона в течение 50 лет эксплуатации различают слабо-, средне- и сильноагрессивные среды. Наибольшей химической активностью в бетоне обладает цементный камень, поэтому стойкость всего конгломерата (бетона, железобетона) зависит от его состава, структуры и может рассматриваться с позиции трех основных видов коррозии цементного камня: выщелачивания, кислотного и солевого. Первый вид — выщелачивание — происходит в результате фильтрации воды через бетон. Этот вид коррозии наиболее опасен для тонкостенных железобетонных конструкций, контактирующих с водой, и конструкций, работающих под напором воды, таких как плотины, дамбы, молы (гидротехнические). Снижение щелочности бетона вследствие вымывания гидрооксида кальция вызывает коррозию стальной арматуры, накопление на ее поверхности продуктов реакции, приводящих к отслоению бетона и разрушению всей конструкции. Интенсивность этого вида коррозии прямо пропорциональна проницаемости бетона, давлению потока воды и содержанию свободного гидрооксида кальция в цементном камне. Следовательно, повысить стойкость бетона можно или за счет перевода гидрооксида кальция в более устойчивые и менее растворимые соединения, или путем целенаправленного повышения плотности бетона. Первое достигается применением пуццоланового и шлакового портландцементов, в которых гидрооксид кальция связывается опокой, трепелом, золой или шлаком в малорастворимые соединения. Второе — путем рационального подбора зернового состава заполнителей, уменьшением водоцементного отношения в сочетании с введением пластифицирующих и гидрофобных добавок, пропиткой и защитой поверхности бетона полимерными составами. Ко второму виду коррозии относится снижение прочности бетона под действием кислотосодержащих сред. Разрушение и вымывание цементного камня, сопровождаемое обсыпанием несвязанного заполнителя, происходит в поверхностных слоях, постепенно распространяясь в глубь бетона. В большей степени этот вид разрушения бетонных конструкций (полов, стен, плит перекрытий) наблюдается на предприятиях химической и пищевой промышленности. При проектировании бетонных конструкций, эксплуатация которых связана с действием растворов кислот и солей с кислой реакцией, предусматривают использование специального кислотостойкого цемента на основе жидкого стекла или полимерного связующего в качестве вяжущего, заполнителей из кислотостойких горных пород (андезита, диабаза, базальта, кварцита) и кислотостойкой стеклопластиковой арматуры. При действии концентрированных горячих кислот применяют защиту бетонной поверхности с помощью полимерных кислотостойких красочных составов, рулонных материалов, а также плит и плиток из ситаллов, шлакоситаллов, каменного литья и кислотостойкой керамики.
Дата добавления: 2014-01-07; Просмотров: 364; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |