КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Вычисление обратной матрицы
Определение параметров шероховатости
Наиболее простым и доступным средством оценки шероховатости поверхности являются наборы образцов шероховатости в виде пластин для разных методов обработки: точения, фрезерования, строгания, шлифования и т. д. Образцы шероховатости служат для оценки шероховатости по параметру Ra методом сравнения. Более достоверно можно измерить шероховатость с помощью микроскопов. Двойной микроскоп академика Линника МИС-11 предназначен для измерения шероховатости поверхности методом светового сечения. Сущность метода заключается в том, что световой поток, проходящий через узкую прямоугольную щель и направленный на исследуемую поверхность под некоторым углом, как бы сечет её плоскостью перпендикулярно к следам обработки. Изображение щели, отражаясь от поверхности претерпевает искривление, характеризующее конфигурацию поверхности. По форме и размеру изгиба изображения щели судят о неровностях поверхности. Микроскоп МИС-11 позволяет измерять высоты микронеровностей в пределах 6,3 ¸ 62,5 мкм и 3,2 ¸ 18,7 мкм, в зависимости от фокусного расстояния сменного объектива. Допускаемая погрешность составляет 7,5-18%. Микроинтерферометр модели МИИ4 предназначен для измерения профильным методом неровностей поверхности высотой от 0,03 до 1 мкм. Действие прибора основано на явлении интерференции света. Прибор позволяет измерять параметры шероховатости Rz, Rmax в пределах 0,05−0,8 мкм. Суммарная погрешность среднего из трех измерений составляет 5 ¸ 15%. Для определения параметров шероховатости поверхности используют профилограммы профиля поверхности исследуемого образца полученные с помощью профилографов (например, профилографа-профилометра мод. 201), которые ощупывают профиль поверхности специальной алмазной иглой. Для оценки параметров шероховатости на профилограмме проводят среднюю линию, а также линии выступов и впадин. Все параметры определяются относительно средней линии. Современные приборы профилометры автоматически определяют все численные параметры шероховатости поверхности и результаты записывают на ленту и демонстрируют на экране. Например, профилометр мод. 253 измеряет параметр шероховатости Ra в пределах 2,5−0,04 мкм с основной приведенной погрешностью до 16%, профилометр под. 283 измеряет Ra в пределах 10−0,02 мкм, профилограф-профилометр мод. 252 (с цифровым отсчетом) измеряет Ra в пределах 100−0,02 мкм, Rmax в пределах 200−0,1 мкм, Sm в пределах 12,5−0,003 мм, tp в пределах 100−0%. Пусть A = (aij) – квадратная матрица с определителем, не равным нулю. Тогда существует обратная матрица A –1, которая вычисляется по формуле . Последняя формула означает, что в i -й строке и j -м столбце обратной матрицы располагается алгебраическое дополнение элемента, стоящего в j -й строке и в i -м столбце исходной матрицы, деленное на определитель исходной матрицы. Напомним здесь, что Apq = (–1) p + q Mpq, где Mpq называется минором и представляет собой определитель, получающийся из определителя det A вычеркиванием p -й строки и q -го столбца. Если определитель матрицы равен нулю, матрица называется вырожденной. Пример 1. Построить матрицу, обратную к заданной матрице . Вычислим детерминант матрицы: detA = 20 + 6 – 24 = 2. Построим матрицу , каждый элемент которой есть алгебраическое дополнение соответствующего элемента матрицы А: . Транспонируем полученную матрицу: . Выпишем обратную матрицу: . Пример 2. Проверьте равенства AA –1 = A –1 A = E в предыдущем примере. .
Дата добавления: 2014-01-07; Просмотров: 455; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |