Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Движущий напор, Па, выражается уравнением




 

(1.13)

 

Рис. 1.6. Схема циркуляционного контура вертикального выпарного аппарата с естественной циркуляцией

Принудительная циркуляция в выпарных аппаратах обеспечивается насосами. Мощность привода к циркуляционному насосу N определяется по формуле

 

(1.14)

 

где - напор, который должен создать насос, Па; G – количество раствора, циркулирующего в контуре аппарата, кг/с; КПД насоса.

 

1.3.2. Выпарные аппараты с естественной циркуляцией [2, 3, 5]

 

В выпарных аппаратах с естественной циркуляцией раствора кратность циркуляции имеет значение 20-30.

Широкое распространение получили выпарные аппараты с центральной циркуляционной трубой, с выносной (внешней) циркуляционной трубой и с выносной греющей камерой.

На рис. 1.7. приведена схема выпарного аппарата с центральной циркуляционной трубой типа ВВ. Он состоит из греющей камеры - 1, пучка кипятильных труб – 2, циркуляционной трубы – 3, сепарационного (парового) пространства – 4, брызгоотделителя (отбойника) - 5.

 
 

Рис. 1.7. Выпарной аппарат с центральной циркуляционной трубой

 

Скорость циркуляции раствора в нагревательных трубах зависит от его физических свойств, тепловой нагрузки поверхности нагрева и гидравлического сопротивления циркуляционного контура. Пространство аппарата над уровнем кипящей жидкости (высотой 1,5-2,5 м) называется сепарационным и служит для отделения брызг и капель раствора, уносимых потоком вторичного пара. Это пространство обычно оканчивается дополнительным брызгоуловителем. Нижнее днище аппарата бывает сферическим и коническим; последнее предпочтительно в случае выпаривания кристаллизующихся растворов.

Греющая камера выпарного аппарата представляет собой пучок труб 2 с двумя трубными решетками, вставленный в кожух – обечайку.

Греющий пар подается в межтрубное пространство, а раствор циркулирует в трубах. Такое направление тока теплоносителей благоприятствует условиям для очистки труб от отложения солей и накипи. Устойчивая циркуляция раствора в аппарате обеспечивается большой удельной поверхностью нагрева на единицу объема раствора в трубах малого диаметра (подъемных) (d =32 мм) в сравнении с центральной трубой большого диаметра (опускной) (d =194 мм и более). Большая скорость циркуляции раствора в трубах (до 2,0 м/с) обеспечивает высокие коэффициенты теплопередачи.

Аппараты компактны и имеют небольшую металлоемкость. Номинальная площадь поверхности нагрева – до 400 м2. Аппарат типа ВВ применяется для упаривания маловязких (Па·с) не кристаллизующихся и неагрессивных растворов, так как он не обеспечивает достаточную скорость циркуляции (не более 0,3-0,8 м/с) из-за обогрева циркуляционной трубы. Поэтому и коэффициенты теплопередачи также относительно низкие.

Для достижения более высокой скорости циркуляции (до 2-3 м/с) применяются аппараты с внешней циркуляционной трубой (рис. 1.8).

Размер греющей камеры снижается (более высокая интенсивность теплопередачи), но эти аппараты имеют большие габариты и более сложную конструкцию.

На рис. 1.8 показан выпарной аппарат с вынесенной циркуляционной трубой 5. В этом аппарате циркуляционная труба не обогревается, следовательно раствор в ней не кипит и парожидкостная смесь не образуется. Разность плотностей парожидкостной смеси в кипятильных трубах 2 и раствора в циркуляционной трубе больше, чем в аппаратах с центральной циркуляционной трубой, поэтому кратность циркуляции и коэффициенты теплопередачи несколько выше. Повышение скорости движения парожидкостной смеси в кипятильных трубах уменьшает возможность отложения солей, которые могут выделяться при концентрировании растворов.

 
 

 

Рис. 1.8. Выпарной аппарат с вынесенной циркуляционной трубой:

1 – нагревательная камера; 2 – кипятильные трубки; 3 – сепаратор; 4 – брызгоотбойник; 5 – циркуляционная труба

 

Рис. 1.9. Выпарной аппарат с вынесенной зоной кипения:

1 – нагревательная камера; 2 – сепаратор; 3 – брызгоотбойник; 4 – труба вскипания; 5 – циркуляционная труба

 

Существенного снижения отложения солей можно достичь при использовании аппаратов с вынесенной зоной кипения (рис.1.9). В таких аппаратах вследствие увеличенного гидростатического давления столба жидкости кипения в трубах нагревательной камеры 1 не происходит, упариваемый раствор только перегревается. При выходе перегретого раствора из этих труб в трубу вскипания 4 он попадет в зону пониженного гидростатического давления, где и происходит интенсивное его закипание. Таким образом предотвращается возможность отложения накипи на теплообменной поверхности труб и, следовательно, увеличиваются коэффициент теплопередачи и время эксплуатации аппарата между профилактическими ремонтами.

Часто в технологии встречаются растворы, кипение которых сопровождается пенообразованием. При вспенивании увеличивается унос капель и кристаллов из раствора с вторичным паром, быстрее засоляются греющие поверхности в последующих аппаратах, где этот пар конденсируется. Для упаривания пенящихся растворов применяют выпарной аппарат с выносной поверхностью нагрева (рис. 1.10), так как в основном в нем происходит самоиспарение перегретой в трубах жидкости при поступлении ее в сепаратор. При этих условиях жидкость испаряется спокойно, и при достаточных размерах сепаратора не происходит уноса капелек жидкости и пены со вторичным паром.

 

 

 

Рис. 1.10. Выпарной аппарат с выносной поверхностью нагрева: 1 – сепаратор; 2 – греющая камера




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 914; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.