Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Физико-химические свойства углеводородных газов




 

Нефтяной газ при нормальных условиях – неполярная, аддитивная система (смесь компонентов от С1 до С4). Следовательно, к нему при нормальных условиях применимы аддитивные методы расчётов физико-химических и технологических параметров (Псмеси):

, (3.3)

 

где gi – весовая доля;

Ni – мольная доля;

Vi – объёмная доля;

Пi – параметр i-го компонента.

Плотность смеси газов рассчитывается следующим образом:

 

. (3.4)

 

При нормальных условиях плотность газа rг = Mi / 22,414.

Нефтяной газ представлен в виде смеси углеводородов, поэтому для оценки его физико-химических свойств необходимо знать, как выражается состав смеси.

Массовая доля (gi) – отношение массы i-го компонента, содержащегося в системе к общей массе системы:

 

(3.5)

 

Молярная (мольная) доля (Ni) – отношение числа молей i-го компонента к общему числу молей в системе:

 

(3.6)

, (3.7)

 

где mi – масса i-го компонента;

Мi – молекулярный вес.

 

(3.8)

 

Объёмная доля (Vi) – доля, которую занимает компонент в объёме системы.

 

(3.9)

 

Для идеального газа соблюдается соотношение Vi = Ni.

Молекулярная масса смеси рассчитывается следующим образом:

 

(3.10)

 

Относительная плотность газа по воздуху:

 

. (3.11)

 

Для нормальных условий » 1,293; для стандартных условий » 1,205.

Если плотность газа задана при атмосферном давлении (0,1013 МПа), то пересчёт её на другое давление (при той же температуре) для идеального газа производится по формуле:

. (3.12)

 

Смеси идеальных газов характеризуются аддитивностью парциальных давлений и парциальных объёмов.

Для идеальных газов давление смеси равно сумме парциальных давлений компонентов (закон Дальтона):

 

, (3.13)

 

где Р – давление смеси газов;

рi – парциальное давление i-го компонента в смеси,

или

 

. (3.14)

 

. (3.15)

 

Т. е. парциальное давление газа в смеси равно произведению его молярной доли в смеси на общее давление смеси газов.

Аддитивность парциальных объёмов компонентов газовой смеси выражается законом Амага:

 

, (3.16)

 

где V – объём смеси газов;

Vi – объём i-го компонента в смеси.

или

 

. (3.17)

 

Для определения многих физических свойств природных газов используется уравнение состояния.

Уравнением состояния называется аналитическая зависимость между параметрами, описывающими изменение состояние вещества. В качестве таких параметров используется давление, температура, объём.

Состояние газа при стандартных условиях характеризуется уравнением состояния Менделеева-Клайперона:

 

, (3.18)

 

где Р – абсолютное давление, Па;

V – объём, м3;

Q – количество вещества, кмоль;

Т – абсолютная температура, К;

R – универсальная газовая постоянная Па×м3/(кмоль×град).

 

У этого уравнения есть свои граничные условия. Оно справедливо для идеальных газов при нормальном (1 атм.) и близких к нормальному давлениях (10-12 атм.).

При повышенном давлении газ сжимается. За счёт направленности связи С-Н происходит перераспределение электронной плотности, и молекулы газов начинают притягиваться друг к другу.

Для учёта этого взаимодействия в уравнение (3.18) вводится коэффициент сверхсжимаемости z, предложенный голландским физиком Ван-дер-Ваальсом, учитывающий отклонения реального газа от идеального состояния:

 

, (3.19)

 

где Q – количество вещества, моль.

Физический смысл коэффициента сверхсжимаемости заключается в расширении граничных условий уравнения Клайперона-Менделеева для высоких давлений.

Коэффициент z зависит от давления и температуры, природы газа (критических давлений и температуры).

Критическое давление – давление, при котором газообразный углеводород переходит в жидкое состояние.

Критическая температура – температура, при которой жидкий углеводород переходит в газообразное состояние.

Приведёнными параметрами индивидуальных компонентов называются безразмерные величины, показывающие, во сколько раз действительные параметры состояния газа отклоняются от критических:

 

(3.20)

 

(3.21)

 

(3.22)

 

Существуют графики, эмпирические формулы и зависимости для оценки коэффициента сверхсжимаемости от приведенных давлений и приведенных температур.

Зная коэффициент сверхсжимаемости, можно найти объём газа в пластовых условиях по закону Бойля-Мариотта:

 

. (3.23)

 

Объёмный коэффициент газа используется при пересчёте объёма газа в нормальных условиях на пластовые условия и наоборот (например, при подсчёте запасов):

(3.24)

 

Вязкость газа – свойство газа оказывать сопротивление перемещению одной части газа относительно другой.

Различают динамическую вязкость m и кинематическую вязкость n. Кинематическая вязкость учитывает влияние силы тяжести.

Динамическая вязкость зависит от средней длины пробега молекул газа и от средней скорости движения молекул газа:

 

, (3.25)

 

где r – плотность газа;

– средняя длина пробега молекулы;

– средняя скорость молекул.

Кинематическая вязкость природного газа при нормальных условиях невелика и не превышает 0,01 сантипуаза.

Динамическая вязкость газа увеличивается с ростом температуры (при повышении температуры увеличивается средняя скорость и длина пробега молекул), однако при давлении более 3 МПа вязкость с ростом температуры начинает снижаться. От давления вязкость газа практически не зависит (снижение скорости и длины пробега молекул при увеличении давления компенсируется ростом плотности).

 




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 390; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.