Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Физические явления, протекающие в сварочной дуге

Лекция № 2

Сварочная дуга представляет собой один из видов устойчи­вого электрического разряда через газовый промежуток, в котором на­ходится смесь нейтральных атомов, электронов и ионов. Этот разряд ха­рактеризуется высокими плотностью тока и температурой. Электрод, соединенный с отрицатель­ным зажимом источника, называется катодом, а электрод, соединенный с положительным зажимом — анодом. Под действием напряжения, имею­щегося между электродами, электроны и отрицательно заряженные ионы перемещаются к аноду, а положительно заряженные ионы — к катоду. В дуговом разряде наблюдается неравномерное распределение электриче­ского поля в межэлектродном пространстве, состоящем из трех областей: катодной, анодной и столба дуги. Такая структура связана с тем, что столб дуги не может граничить непосредственно с металлом электродов, так как в большинстве случаев точка кипения последних значительно ниже температуры столба. В приэлектродных областях, соединяющих столб дуги с электродами, происходит постепенное снижение температуры и степени термической ионизации газа. На поверхности электродов часто наблюдаются пятна — катодное и анодное, на границе которых с соответ­ствующими областями дуги наблюдаются скачки потенциалов. Поэтому процессы образования заряженных частиц и переноса тока в этих обла­стях существенно отличаются от соответствующих процессов в столбе, причем основные свойства столба мало зависят от процессов в катодной и анодной областях.

Катодная область. Большую роль в обеспечении проводимости дуго­вого промежутка играет поток эмитированных катодом электронов. Этот процесс обеспечивается как за счет нагрева поверхности катода (термо­электронная эмиссия), так и за счет создания у его поверхности электри­ческого поля высокой напряженности (автоэлектронная эмиссия). При термоэлектронной эмиссии электроны за счет нагрева приобретают необ­ходимый запас кинетической энергии для преодоления потенциального барьера, ограждающего поверхность катода. Эту энергию характеризу­ют работой выхода электрона U BЫX, величина которой для разных ме­таллов составляет от 2 до 5 В. При автоэлектронной эмиссии энергия, необходимая для вырывания электронов из катода, сообщается внешним электрическим полем, которое вытягивает их за пределы воздействия электростатического поля металла. Определенный вклад вносит и бом­бардировка катода движущимися частицами. Электроны, прошедшие барьер, ускоряются в поле катодного потенциала в сторону столба дуги и, отдавая свою кинетическую энергию в столкновениях с нейтральными атомами, поддерживают ионизацию и нагрев газа на гра­нице между столбом дуги и катодной областью. Внешнее электрическое поле положительных ионов, скопившихся в катодной области, умень­шает работу выхода электронов U BЫX на 1-2 В. Данное явление называ­ется эффектом Шоттки. Поскольку реальная работа выхода электронов U BЫXР и катодное падение напряжения U KАТ имеют разные знаки, то в об­щем случае потенциальный барьер для выхода электронов уменьшается, что может быть выражено так; U KАТ - U BЫXР. При малых размерах катод­ной области экспериментально можно определить именно эту величину, которая и принимается за катодное падение напряжения. Протяжен­ность l KАТ катодной области электрической дуги очень мала и составляет 10-4-10-3 мм. Величина катодного падения напряжения U KАТ лежит в пределах 5-20 В. Тогда градиент падения напряжения (U KАТ / l KАТ ) равен 104-105 В/мм. Исследования показывают, что в катодной области доля электронного тока составляет около 60% от полного тока Iд, а плотность тока на стальном катоде близка к 25 А/мм2.

Анодная область. Анод не эмитирует положительно заряженных ио­нов, поэтому анодный ток обусловлен переносом к нему отрицательно заряженных частиц — электронов. В связи с этим вблизи анода образуется избыток отрицательных зарядов, в результате чего у поверх­ности анода возникает дополнительный потенциальный барьер, величина напряжения которого равна работе выхода электронов U BЫX. Электроны не могут выйти из анода и за счет энергии теплового движения, так как анодное падение напряжения U ан создает для них непреодолимый барьер. Общее значение потенциала в анодной области равно U ан + U BЫX. Электро­ны, выходящие из плазмы столба дуги и попадающие в анодную область, ускоряются в поле анодного падения потенциала и приобретают допол­нительную энергию, которой оказывается достаточно для ионизации ато­мов, сталкивающихся с электронами. Появившиеся ионы также ускоря­ются под действием анодного падения напряжения в сторону столба дуги и отдают плазме свою избыточную энергию посредством деионизации и соударений. Протяженность анодной области сопоставима с длиной сво­бодного пробега электрона и составляет около 10-3 мм. В зависимости от материала анода и типа ионизирующих присадок U ан ле­жит в пределах 2-10 В. Градиент напряжения имеет порядок 104 В/мм, т. е. ниже, чем в катодной области. Доля ионного тока в анодной области составляет около 20% от общего тока Iд, а плотность тока для стальных электродов в анодной области приблизительно равна 15 А/мм2.

Столб дуги. Эта часть дуги расположена между катодной и анодной областями и имеет длину, на несколько порядков превышающую размеры указанных областей, l ст = 1-40 мм. Заряженные частицы поступают в столб дуги из катодной и анодной областей, а также возникают в нем за счет термической ионизации нейтральных частиц. Последний процесс играет подчиненную роль. Так, степень диссоциации в парах железа у сварочных дуг не превышает 4%, что свидетельствуете слабой ионизации плазмы столба дуги. В столбе электронная составляющая тока намного больше ионной. Падение напряжения в столбе UCT достигает 40 В, что обеспечивает градиент напряжения εст = 1-4 В/мм. При этом падение напряжения прямо пропорционально длине столба 1СТ. Плотность тока в столбе дуги со стальными электродами достигает 20 А/мм2.

Поскольку протяженность приэлектродных областей мала по сравне­нию с длиной столба, то длину дуги считают равной длине столба

Распределение потенциала в дуге имеет вид, показанный на рис. 2.1. Из приведенного графика следует, что падение напряжения на дуге для точных расчетов можно записать так:

При использовании экспериментальных данных зависи­мость упрощается:

Вся мощность, выделяемая в катодной области Р кат = Iд (U KАТ - U BЫXР), идет в катод на плавление, испарение и теплоотвод. Мощность тепловыделения на аноде вычисляется по соотношению Ран = 1д(U ан + U BЫX). Знание соотношения мощностей, выделяемых на ка­тоде и аноде, необходимо для выбора полярности дуги при сварке на по­стоянном токе. Для большинства покрытых электродов Р ан больше Р каТ в 1,3-1,5 раза. Поэтому при ручной дуговой сварке для увеличения ско­рости плавления электрода используют обратную полярность (+ на элек­троде). Такая же полярность используется при механизированной свар­ке плавящимся электродом. При сварке неплавящимся вольфрамовым электродом для уменьшения его перегрева и износа применяют прямую полярность (– на электроде).

 

 

 

 

 

 

 

 

<== предыдущая лекция | следующая лекция ==>
Документальные и фактографические информационные системы | Лекция №2. Жанровые и стилевые особенности новостных материалов в СС
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 2412; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.