Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Решение. Средняя арифметическая и гармоническая

Средняя арифметическая и гармоническая

 

Для количественной характеристики однородных статистических показателей используют средние величины.

Средняя величина есть обобщающая количественная характеристика совокупности однотипных явлений по одному варьирующему признаку.

Средняя величина представляет значение этого признака в совокупности одним числом, несмотря на различия количественных характеристик этого признака по отдельным единицам совокупности.

Статистические средние рассчитываются на основе массовых данных статистически правильно организованного массового наблюдения. При помощи средней происходит как бы сглаживание различий в величине признака, которые возникают по тем или иным причинам у отдельных единиц наблюдения. Средняя величина является отражением значений изучаемого признака, следовательно, измеряется в той же размерности, что и этот признак. Средняя величина может быть вычислена только для какой-то однородной совокупности, поэтому её расчет необходимо сочетать с группировкой.

Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному признаку. Чтобы получить полное и всестороннее представление об изучаемой совокупности по ряду существенных признаков, в целом необходимо располагать системой средних величин, которые могут описать явление с разных сторон.

Наиболее часто применяются средняя арифметическая и средняя гармоническая.

Средняя арифметическая простая (невзвешенная) равна сумме отдельных значений признака, деленной на число этих значений.

Отдельные значения признака называют вариантами и обозначают через х (x1, x2, …, xn), число единиц совокупности обозначают через n, среднее значение признака – через. Следовательно, средняя арифметическая простая равна:

 

Пример. Пусть имеются данные о количестве изготовленной продукции за неделю:

День недели Понедельник Вторник Среда Четверг Пятница
Количество продукции, шт.          

 

Определить среднюю дневную выработку продукции.

 

Средняя арифметическая простая применяется в тех случаях, когда данные не сгруппированы. Если же информация представлена в виде ряда распределения, т.е. данные сгруппированы, то вычисляется средняя арифметическая взвешенная. Число одинаковых значений признака в рядах распределения называется частотой или весом и обозначается n.

Пример. Имеются данные о распределении рабочих по уровню заработной платы (табл. 5.1). Определить среднюю заработную плату одного рабочего.

Таблица 5.1

Месячная заработная плата, руб. Число рабочих
6000-7000  
7000-8000  
8000-9000  
9000-10000  
10000-11000  

Решение. Фонд заработной платы по каждой группе рабочих равен произведению варианты на частоту, а сумма этих произведений дает общий фонд заработной платы всех рабочих.

 

 

 

В соответствии с этим, расчеты можно представить в общем виде:

 

 

 

Полученная формула называется средней арифметической взвешенной.

Основные свойства средней арифметической:

1. От уменьшения или увеличения частот каждого значения признака х в k раз величина средней арифметической не изменится.

Если все частоты разделить или умножить на какое-либо число, то величина средней не изменится.

2.Общий множитель индивидуальных значений признака может быть вынесен за знак средней:

 

 

3. Средняя суммы (разности) двух или нескольких величин равна сумме (разности) их средних:

 

 

4. Если х = с, где с - постоянная величина, то.

5. Сумма отклонений значений признака x от средней арифметической равна нулю:

 

 

Наряду со средней арифметической, в статистике применяется средняя гармоническая, которая равна обратной средней арифметической из обратных значений признака. Как и средняя арифметическая, она может быть простой и взвешенной.

Пример. Необходимо определить среднее время изготовления одного изделия, если первому рабочему требуется для изготовления единицы продукции 1/4 часа, второму - 1/3 часа, третьему – 1/2 часа. Задачу нельзя решить с помощью средней арифметической, т.к. каждый рабочий за смену изготовил различное число деталей. Поэтому решаем по формуле средней гармонической простой:

 

 

 

Формула расчёта средней гармонической простой:


 

Cредняя гармоническая взвешенная определяется по формуле:

 

 

 

Среднее гармоническое взвешенное используется в тех случаях, когда значение признака и вес даны в виде сомножителя.

Пример. Имеются данные о себестоимости единицы продукции и издержках производства по трём заводам (табл. 5.2).

Таблица 5.2

Завод Себестоимость единицы продукции, руб. Издержки производства, руб.
     
     
     

 


 

Определить среднюю себестоимость продукции по трём заводам в целом.

<== предыдущая лекция | следующая лекция ==>
Относительные величины | Пример. Характеристиками вариационных рядов, кроме средней арифметической и средней гармонической, являются структурные средние
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 415; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.