Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Молекулярность и порядок реакций




Обратимые и необратимые) реакции

Двусторонние и односторонние

Со статистической точки зрения все химические реакции протекают одновременно в сторону равновесия и в противоположном направлении. Скорость реакции в сторону равновесия больше скорости в противоположном направлении, в результате система приближается к равновесию. При равновесии обе реакции имеют одинаковые скорости, так что скорость суммарного процесса равна нулю. Таким образом, в общем случае химические реакции являются двусторонними или, как говорят, обратимыми. Понятие «обратимая реакция» следует отличать от термодинамического понятия «обратимый процесс»: обратимый процесс характеризуется бесконечно малым различием скоростей прямого и обратного процессов и, следовательно, бесконечно малой скоростью результирующего процесса и бесконечно малым отклонением системы от положения равновесия.

Двусторонняя химическая реакция обратима в термодинамическом смысле только в непосредственной близости к состоянию химического равновесия. Двусторонняя реакция в состоянии, далеком от равновесного, когда скорости прямого и обратного процессов существенно различны и суммарная скорость реакции значительно больше нуля, термодинамически необратима. Таким образом, термин «двусторонняя реакция» шире, чем термодинамическое понятие «обратимая реакция», однако это понятие укрепилось и широко используется.

Итак, все химические реакции являются в принципе двусторонними (обратимыми). Однако практически в условиях проведения опыта (исходные концентрации, р, Т) равновесие может быть сдвинуто в такое положение, при котором концентрации исходных веществ ничтожно малы и ими можно пренебречь. В этом случае практически протекает только прямой процесс. Такие реакции называют кинетически односторонними или кинетически необратимыми. Обычно необратимыми являются такие реакции, в ходе которых хотя бы один продукт удаляется из сферы реакции (выпадает осадок, выделяется газ, образуется малодиссоциирующее соединение), или такие, которые сопровождаются большим тепловым эффектом.

Если же при проведении реакции положению равновесия соответствуют достаточно большие, отчетливо определяемые аналитически концентрации как исходных веществ, так и продуктов реакции, то такие реакции называются кинетически двусторонними или кинетически обратимыми.

Кинетическая классификация реакций.

Химические реакции можно классифицировать по числу молекул, участвующих в каждом элементарном химическом акте. Мономолекулярными (одномолекулярными) называются реакции, в которых такой акт представляет собой химическое превращение одной молекулы (изомеризация, диссоциация, ядерный распад и пр.). При мономолекулярных процессах исходные молекулы превращаются независимо от остальных, то есть превращение молекул зависит только от их внутреннего состояния. Такой процесс превращения называется спонтанным. Бимолекулярные (двухмолекулярные) реакции - такие, элементарный акт которых осуществляется при столкновении двух молекул (различных или одинаковых); это самый распространенный тип элементарных реакций. В тримолекулярных (трёхмолекулярных) реакциях элементарный акт осуществляется при столкновении трёх молекул.

Так как при нормальном давлении тройных столкновений гораздо меньше, чем двойных, тримолекулярные реакции весьма редки; реакции большей молекулярности практически не встречаются.

Экспериментальное изучение кинетики той или иной реакции только в исключительных случаях позволяет отнести её к одной из указанных групп. Это удаётся сделать только для простых реакций, протекающих в одну стадию, уравнение которой совпадает со стехиометрическим уравнением реакции в целом. Такие химические реакции являются чрезвычайно редкими (например, разложение и синтез HJ, разложение NO2 и некоторые другие). Большинство химических реакций является совокупностью нескольких последовательных (или параллельных) элементарных реакций, каждая из которых может принадлежать к любой из кинетических групп. В простейшем случае, если одна из элементарных реакций протекает значительно медленнее остальных, наблюдаемый кинетический закон будет соответствовать именно этой реакции. Если же скорости отдельных стадий сравнимы, кинетика может быть ещё больше осложнена. Поэтому для характеристики кинетики реальных процессов вводится понятие порядка реакции, отличное от понятия молекулярности.

Порядок химической реакции по данному веществу - это число, равное степени ni, в которой концентрация этого вещества входит в кинетическое уравнение реакции. Сумма показателей степеней n1 + n2 + ¼ + nn определяет порядок реакции в целом. Порядок ni может быть положительным или отрицательным, целым или дробным. Вследствие сложности большинства химических процессов порядок реакции обычно не совпадает с ее молекулярностью и не соответствует стехиометрическому уравнению. Совпадение этих трех величин – порядка реакции, ее молекулярности и суммы стехиометрических коэффициентов уравнения реакции наблюдается только в одном простейшем случае, когда реакция протекает в одну стадию, уравнение которой совпадает с уравнением реакции в целом; такие реакции называются элементарными.

Порядок реакции по данному веществу ni = n i для всех реакций, которые протекают бесконечно медленно, то есть тогда, когда система из начального состояния переходит в конечное квазистатически или когда она находится в состоянии, бесконечно близком к состоянию химического равновесия.

Таким образом, порядок реакции характеризует формально-кинетическую зависимость скорости реакции от концентрации реагирующих веществ, а молекулярность - элементарный механизм отдельных стадий сложного процесса.

Реакции разделяют также по природе частиц, участвующих в элементарном акте реакции. Реакции, в которых участвуют молекулы, называют молекулярными. Реакции с участием атомов или свободных радикалов называются цепными. Реакции с участием ионов называются ионными.

Реакции классифицируют по числу фаз, участвующих в реакции. Реакции, протекающие в одной фазе, называются гомогенными. Реакции, протекающие на границе раздела фаз, называются гетерогенными.

Можно классифицировать реакции по степени сложности. В этом плане можно выделить двусторонние и односторонние (обратимые и необратимые); изолированные (реакции, в ходе которых образуется продукт только одного типа) и параллельные; последовательные (консекутивные) реакции; сопряженные реакции (такие одновременно идущие реакции, одни из которых могут идти в отсутствие других, а эти последние не могут протекать в отсутствие первых). Теоретическое изучение этих реакций основывается на том, что при протекании в системе одновременно нескольких реакций каждая из них идет независимо от других и подчиняется закону действия масс (принцип независимого протекания реакций).

Основные задачи химической кинетики: 1) расчет скоростей реакций и определение кинетических кривых, то есть зависимости концентраций реагирующих веществ от времени (прямая задача); 2) определение механизмов реакций по кинетическим кривым (обратная задача).

Основные различия между химической термодинамикой и кинетикой:

1. В химической термодинамике нет времени, она предсказывает только конечный результат процесса. Химическая кинетика изучает только изменяющиеся (динамические) системы.

2. Равновесные свойства определяются состоянием как исходных веществ, так и продуктов реакции. Для термодинамики важны левая и правая части химического уравнения. Скорость реакции определяется только состоянием исходных веществ. Для кинетики важна только левая часть уравнения реакции.

3. Термодинамические свойства определяются термодинамической активностью веществ, кинетические свойства – их концентрацией.

 


Лекция 31




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1934; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.