Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Представление распределений

Статистическое распределение выборки. Графическое

Пусть требуется изучить статистическую совокупность относительно некоторого количественного признака X. Числовые значения признака будем обозначать через хi.

Из генеральной совокупности извлекается выборка объёма п.

I. Количественный признак Хдискретная случайная величина.

Наблюдаемые значения хi называют вариантами, а последовательность вариантов, записанных в возрастающем порядке – вариационным рядом.

Пусть x1 наблюдалось n1 раз,

x2 наблюдалось n2 раз,

………………………..

xk наблюдалось nk раз,

причем . Числа ni называют частотами, а их отношение к объему выборки, т.е. относительными частотами (или частостями), причем .

Значение вариант и соответствующие им частоты или относительные частоты можно записать в виде таблиц.

Таблица 1.

Варианты xi x1 x2 xk
Частоты ni n1 n2 nk

 

Эту таблицу называют дискретным статистическим рядом распределения (ДСР) частот или таблицей частот.

Таблица 2.

Варианты xi x1 x2 xk
Относительные частоты wi w1 w2 wk

Это таблица - ДСР относительных частот или таблица относительных частот.

Определение. Модой называется наиболее часто встречающийся вариант, т.е. вариант с наибольшей частотой. Обозначается xмод .

Определение. Медианой называется такое значение признака, которое делит всю статистическую совокупность, представленную в виде вариационного ряда, на две равных по числу части. Обозначается .

Если n нечетно, т.е. n=2m+1, то = xm+1.

Если n четно, т.е. n=2m, то .

Пример 3. По результатам наблюдений: 1, 7, 7, 2, 3, 2, 5, 5, 4, 6, 3, 4, 3, 5, 6, 6, 5, 5, 4, 4 построить ДСР относительных частот. Найти моду и медиану.

Решение. Объем выборки n = 20. Составим ранжированный ряд элементов выборки: 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7. Выделим варианты и подсчитаем их частоты (в скобках): 1 (1), 2 (2), 3 (3),
4 (4), 5 (5), 6 (3), 7 (2). Строим таблицу:

xi              
wi 1/20 2/20 3/20 4/20 5/20 3/20 2/20

Наиболее часто встречающийся вариант xi = 5. Следовательно, xмод = 5. Так как объем выборки n – четное число, то 

Если на плоскости нанести точки и соединить их отрезками прямых, то получим полигон частот.

Если на плоскости нанести точки , то получим полигон относительных частот.

Пример 4. Построить полигон частот и полигон относительных частот по данному распределению выборки:

xi          
ni          
wi 2/20 4/20 5/20 6/20 3/20

Решение. На рисунке 1 показан полигон частот и на рисунке 2 – полигон относительных частот.

Рис. 1 Рис. 2

Замечание. Чем круче полигон, тем равномернее процесс. 

II. Пусть количественный признак X - непрерывная случайная величина, принимающая значения из интервала (а,b). Весь диапазон наблюдаемых данных делят на частичные интервалы [ хi; xi+1), которые берут обычно одинаковыми по длине: = xi+1 - xi (i = 0, 1, …, k). Для определения величины интервала () можно использовать формулу Стерджеса:

где xmax - xmin - разность между наибольшим и наименьшим значениями признака, k = 1 + log2 n - число интервалов (log2 n» 3,322 lg n). Если окажется, что h - дробное число, то за длину частичного интервала следует брать либо ближайшее целое число, либо ближайшую простую дробь. За начало первого интервала рекомендуется брать величину x нач = x min - . В каждом из частичных интервалов подсчитывают число наблюдаемых значений, т.е. частоту ni. По частотам находят относительные частоты . Полученные интервалы и соответствующие им частоты (или относительные частоты) записывают в виде таблицы 3. При этом правая граница последнего интервала тоже включается.

Таблица 3.

Частичные интервалы [ xi,xi+1) [ x0, x1) [ x1, x2) [ xk-1, xk ]
Относительные частоты wi w1 w2 wk

Эта таблица называется интервальным статистическим рядом распределения (ИСР) относительных частот, который задает распределение выборки. Аналогично составляется ИСР частот.

Пример 5. Измерили рост (с точностью до см) 30 наудачу отобранных студентов. Результаты измерений таковы:

178, 160, 154, 183, 155, 153, 167, 186, 163, 155, 157, 175, 170, 166, 159,

173, 182, 167, 171, 169, 179, 165, 156, 179, 158, 171, 175, 173, 164, 172.

Построить интервальный статистический ряд относительных частот.

Решение. Для удобства проранжируем полученные данные:

153, 154, 155, 155, 156, 157, 158, 159, 160, 163, 164, 165, 166, 167, 167,

169, 170, 171, 171, 172, 173, 173, 175, 175, 178, 179, 179, 182, 183, 186.

Отметим, что Х - рост студента - непрерывная случайная величина. Как видим, xmin = 153, хmax = 186; по формуле Стерджеса, при n = 30, находим длину частичного интервала

Примем = 6. Тогда хнач = 153 - =150. Исходные данные разбиваем на шесть (k = 1 + log230 = 5,907» 6) интервалов:

[150, 156), [156, 162), [162, 168), [168, 174), [174,180), [180,186].

Подсчитав число студентов (ni), попавших в каждый из полученных промежутков, получим ИСР:

[ xi,xi+1) [150, 156) [156, 162) [162, 168) [168, 174) [174,180) [180,186]
ni            
w i 4/30 5/30 6/30 7/30 5/30 3/30

Первая и третья строчка таблицы образует ИСР относительных частот. 

Замечание. При решении учебных задач на построение ИСР можно пользоваться следующими правилами:

1. Назначаются нижняя граница а и верхняя граница b для вариант так, чтобы отрезок [ a; b ] вместил всю выборку; часто полагают , , но иногда a и b назначают из соображений удобства, но не слишком далеко от и .

2. Находится число k равных по длине частичных интервалов варьирования, которое зависит от объема выборки и обычно 6 £ k £ 20; рассчитывается длина интервалов группирования . 

Интервальный статистический ряд распределения, представленный графически, называется гистограммой.

Гистограмма относительных частот строится следующим образом: по оси абсцисс откладываются интервалы (хi; хi+1) и на каждом из них строится прямоугольник высотой

где , - относительная частота.

Площадь i- ого прямоугольника .

Площадь всей гистограммы .

Замечание: гистограмма на рисунке 3 – гистограмма относительных частот.

 

Рис. 3

Можно построить гистограмму частот, высоты прямоугольников которых равны . 

Пример 6. Построить гистограмму частот по данному ИСР частот:

[ xi; xi +1) [100; 120) [120; 140) [140; 160) [160; 180) [180; 200]
ni          

Решение. По ИСР частот находим длину частичных интервалов = 20 и высоты прямоугольников hi = . Результаты занесем в таблицу:

[ xi; xi +1) [100; 120) [120; 140) [140; 160) [160; 180) [180; 200]
ni          
hi   2,5     0,5

xi
xi
xi
hi

Рис. 4

Искомая гистограмма частот изображена на рис. 4. 

В теории вероятностей гистограмме относительных частот соответствует график плотности распределения вероятностей. Распределение выборки, задаваемое интервальным статистическим рядом (табл. 3) или таблицей относительных частот (табл. 2) называется эмпирическим распределением случайной величины.

По теореме Бернулли относительная частота wi, появление события в п независимых испытаниях сходится по вероятности к вероятности рi этого события . Значит во второй строке таблицы 3 и таблицы 2 стоят приближённые значения вероятностей рi, следующих событий и , поэтому распределение выборки называют эмпирическим распределением случайной величины X.

<== предыдущая лекция | следующая лекция ==>
Генеральная и выборочная совокупность. Репрезентативность выборки. Способы отбора (способы организации выборки) | Эмпирическая функция распределения
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 2860; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.