КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Фиксация молекулярного азота
II.Аммиак, образовавшийся в процессе минерализации органического азота, в дальнейшем подвергается окислению микроорганизмами в нитраты и нитриты. Этот процесс называется нитрификацией. Роль микроорганизмов в превращении азотистых веществ
I. Разложение микроорганизмами азотистых органических соединений.
В растительных и животных остатках содержится в большом количества азот (N). Он входит в состав белков, нуклеиновых кислот и др. Азот, содержащийся в составе сложных органических соединений недоступен для зеленых растений. В усвояемую форму он переходит лишь в итоге разложения органического вещества до простых веществ, среди которых важнейшим является NНз↑ Процесс минерализации азота (N)органических соединений до аммиака получил название аммонификации. Происходит этот процесс в результате жизнедеятельности гнилостных бактерий, многих плесневых грибов и актиномицетов. 1. Основная масса органического азота поступает в почву в форме белков. Поэтому первым этапом аммонификации белка является его гидролиз протеазами до пептидов, а затем и до аминокислот. Часть усваивается самими микроорганизмами, а часть остается в почве. 2. Аминокислоты подвергаются дезаминирированию до органических кислот и аммиака Аммиак, образующийся при аммонификации, частично в свободном виде поступает в атмосферу, а в большей части соединяется с анионами различных кислот и остается в почве в виде солей (сернокислый -, хлористый аммоний). На скорость минерализации оказывают влияние температура, влажность, рН среды, аэрация и другие. Наряду с белками источниками азота в почве является мочевина. В результате ее нитрификации образуется NН3 и СО2 :
NН2– СО – NН2 → NН3 + СО2
Этот процесс осуществляют уробактерии, которые выделяют специальный фермент – уреазу. Это окисление NН3 до азотной кислоты. Как всякий окислительный процесс, превращение NН3 в азотную кислоту сопровождается высвобождением энергии. Именно для получения энергии микробы и производят данное превращение веществ. Первая фаза нитрификации – это окисление NН3 до азотистой кислоты (НNО2). Азотная кислота, взаимодействуя с солями почвы, образует нитраты. 2NН3 + 3О2 → 2НNО2 + 2 Н2О + энергия Вторая – окисление НNО2 в НNО3 2НNО2 + О2 → 2 НNО3 + энергия Нитрофицирующие бактерии - это автотрофные организмы хемосинтетики, т.е. используют энергию окислительных реакций для восстановления СО2 и синтеза простейших углеводов (род Nitrosomonas, Nitrobacter и др.). Денитрификация – процесс восстановления нитратов до N2. Осуществляют этот процесс бактерии из родов Pseudomonas, Micrococcus и др. Восстановление идет поэтапно через ряд промежуточных стадий: НNО3 → НNО2 → НNО, N2О → N2 азотная (нитриты) (окись) закись азот азотистая азотно- азота ватистая
Этот процесс вызывают бактерии при дефиците О2, способные использовать кислород нитратов для окисления органических соединений. Процессы выноса нитратов атмосферными и грунтовыми водами, отчуждение органического азота с урожаем приводят к снижению содержания азота в почве. Проблема азотного баланса культурных почв решается внесением органических и минеральных удобрений. Азот минеральных удобрений получают в результате промышленного производства НNО3 и NН3 из азота воздуха. Химическое связывание N2 с образованием аммиака: N2 + 3NН3 → 2NН3 осуществляется в присутствии катализаторов при температуре более 500˚ и высоком давлении. Однако азот минеральных удобрений восполняет лишь часть азота, выносимого с урожаем. Естественным путем запасы азота в почве восполняются за счет фиксации молекулярного азота бактериями, живущими в почве. Бактерии – фиксаторы азота известны двух типов: свободноживущие азотофиксаторы и симбиотические, т.е. живущие в симбиозе с корнями высших растений, преимущественно из семейства бобовых. Для сельского хозяйства большое значение имеет симбиотическая азотофиксация: бобовые растения + клубеньковые бактерии и симбиоз микроорганизмов с некоторыми другими небобовыми культурами. Так, если свободноживущие азотофиксаторы могут накопить за один год в пахотном слое почвы на 1 га примерно 5-10 килограммов азота, то симбиотическая ассоциация – бактерии + бобовое растение – от 10-20 до 150-200 кг азота, в зависимости от вида бобового растения. Азотные удобрения в больших концентрациях подавляют в ней азотофиксацию, а в небольших – усиливают. Для усиления азотофиксации в почву вносят азотобактерин – препарат чистой культуры Azotolacter chroococcum в сочетании с раствором и СаСО3. 1. Свободноживущие азотофиксаторы бывают анаэробы и аэробы. Первые сбраживают сахара (углеродсодержащие вещества) до масляной и уксусной кислот. Выделяющаяся при этом энергия используется на усвоение газообразного азота атмосферы. Аэробы разлагают углеродсодержащие вещества до СО2 и Н 2О при помощи О2. Первые это род Clostricleiem, вторые – Arotobacter. 2. Клубеньковые бактерии. Свое название бактерия получила благодаря способности вызывать образование на корне так называемых клубеньков, которые могут быть различной формы и размеров. В настоящее время насчитывается около 190 видов растений разных семейств, способных симбиотически усваивать азот. К их числу относятся некоторые деревья и кустарники: ольха, лох, облепиха и др. Клубеньки у небобовых населены актиномицетами. У некоторых тропических деревьев клубеньки развиваются на листьях. Важное значение в природе имеют некоторые лишайники, представляющие симбиоз гриба и азотофиксирующих цианобактерий. Они развиваются в субарктических зонах на бесплодных участках, являясь пионерами заселения суши. Наибольший интерес для сельского хозяйства представляют клубеньковые бактерии из рода Rhizobium, живущие в симбиозе с бобовыми. Среди бобовых люцерна может накопить за год до 500-600 кг азота на одном гектаре, клевер – 250-300кг, горох, фасоль – 50-60 кг. Образование клубеньков происходит следующим путем. Из почвы бактерии проникают в ткани корня через тонкие и нежные оболочки корневых волосков. Отсюда они попадают в паренхиму первичной коры по межклетникам и начинают делиться. Размножение бактерий в клетках корня сопровождается выделением особых веществ, которые стимулируют клеточное деление. При этом сами бактерии превращаются в бактероиды, которые примерно в 40 раз больше, чем исходящая бактерия. Между клубеньковыми бактериями и бобовыми растениями устанавливаются симбиотические отношения. Бактерии используют органические соединения, поступающие от растения, а растения получают из клубеньков соединения азота. Исследованиями установлено, что в распоряжение растения поступает от 70 до 90% азота, связанного бактериями. Такое усиление азотистого питания бобовых отражается на их химическом составе. В тканях бобовых процент белковых веществ всегда выше, чем у других семейств. Этим объясняется пищевая ценность семян бобовых – фасоли, гороха, сои, а так же высокое кормовое достоинство зеленой массы и сена бобовых – клевера, люцерны, эспарцета и др. Кроме того, клубеньковые бактерии обогащают почву связанными формами азота. 1 га поля, засеянного бобовыми, получает от 100 до 400 кг азота. Около 1/3 этого количества остается в почве с корнями, опавшими листьями и т.п.
Молекулярный механизм азотофиксации:
Молекула азота прочна и химически инертна (N=N). Биологическая фиксация осуществляется благодаря ферменту – нитрогеназе. Предполагают, что процесс осуществляется трехступенчато. Нитрогеназа представляет собой сложный ферментный комплекс, который состоит из двух белков, и для его протекания необходим постоянный приток электронов и энергии (АТФ). По оценкам на фиксацию одного моля N2 необходимо 30-40 молей АТФ. Источником электронов и АТФ для фиксации нитрогеназы у разных типов микроорганизмов могут быть процессы фотосинтеза, дыхания или брожения. Например, свободноживущие бактерии Azotobacter для восстановления 1 г N2 окисляют 70-100 г глюкозы. Симбионты рода Rhizobium используют фотоассимиляты, синтезирующиеся в листьях растения-хозяина. Приведенная выше схема действия нитрогеназы упрощена. На самом деле это очень сложный процесс, как и сам фермент, который состоит из нескольких компонентов, в частности в его состав входят 2 атома Мо и около 40 атомов Fе, которые, как полагают, служат источником электронов. Этот фермент катализирует сразу три типа сопряженных реакций: восстановление субстратов, гидролиз АТФ и выделение Н2. Активирование водорода обусловливается дегидрогеназами. Кроме N2 она может восстанавливать м другие соединения с тройной связью (азид, цианид, ацетилен). Синтезируемый бактероидом NН2, соединяясь с органическими кислотами, образует в конечном итоге аминокислоты, транспортируемые затем в клетки растения-хозяина. Для улучшения развития сельскохозяйственных бобовых растений применяют специальный препарат – нитрагин, представляющий собой культуру какого-либо вида клубеньковых бактерий, который вносят в почву. Разработаны специальные приемы заражения семян нужными видами клубеньковых бактерий. При изготовлении нитрагина применяют только эффективные, приспособленные к каждой бобовой культуре виды клубеньковых бактерий. На эффективность нитрагина большое влияние оказывают внешние условия: рН почвы, доступность Са, Р, микроэлементов, увлажненность, О2 и т.д. При благоприятных внешних условиях урожай зеленой массы, например люпина, при внесении нитрагина составил около 300% по сравнению с урожаем без применения этого препарата. По разным культурам эта цифра может быть и выше и достигать даже 900% (люцерна).
Биологический круговорот азота в природе:
Дата добавления: 2014-01-07; Просмотров: 3325; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |