КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Преобразования Галилея
Инерциальные системы отсчета. Принцип относительности Галилея.
Рассмотренные ранее переходы от декартовой к сферической, цилиндрической или другой системе координат относятся к одной и той же системе отсчета. Это простые геометрические преобразования. Связь систем отсчета, находящихся в движении относительно друг друга, это физическая задача. Система отсчета, движущаяся поступательно равномерно и прямолинейно, называется инерциальной системой отсчета. В инерциальных системах отсчета выполняются законы инерции Ньютона. Из многочисленных экспериментов известно, что в инерциальных системах координат все механические явления протекают одинаково – это постулат относительности Галилея (Галилео Галилей, 1564 – 1642, Италия). Это постулат, т.к.:
В момент t=0 начала систем отсчета совпадают, а в момент t K’ находится в точке преобразования Галилея
Пусть не штрихованная система движется относительно штрихованной системы со скоростью . Тогда: Величины, численные значения которых не изменяются при преобразованиях – инварианты. При преобразованиях изменяются варианты (скорость, импульс, координаты). Рассмотрим, как ведет себя длина тел при преобразованиях Галилея. Пусть в штрихованной системе находится стержень с координатами Его длина в неподвижной системе отсчета: В движущейся системе отсчета: засекли концы движущегося стержня одновременно. Длина движущегося стержня: Воспользуемся формулами преобразования Галилея:
Дата добавления: 2014-01-07; Просмотров: 359; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |