КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Медь и сплавы на ее основе, маркировка, свойства и область применения
Титан и сплавы на его основе, маркировка, свойства и область применения Титан – металл серебристо-серого цвета с высокой температурой плавления 1668 оС и плотностью 4,5 г/см3, отличается химической инертностью и биологической совместимостью с живыми тканями. Отечественная промышленность выпускает технический титан марок ВТ1-00 и ВТ1-0, содержащий около 99,5 % Ti. Технический титан обладает низкой прочностью, высокой пластичностью и вязкостью; применяется в химической промышленности, радиоэлектронике и медицине. Для повышения механических свойств титан легируют алюминием, магнием, ванадием, молибденом и др. элементами. Титановые сплавы поставляются в виде листов, труб, прутков, проволоки, поковок, отливок и др. Сплавы достаточно технологичны – хорошо льются, обрабатываются давлением, свариваются дуговой сваркой в атмосфере защитных газов, но плохо обрабатываются резанием (вязкие). К деформируемым относятся сплавы ВТ5, ВТ6, ВТ8, ВТ14 и др., а также сплав ОТ4 (содержит 4,5 % Al и 1,5 % Mn). Литейные сплавы имеют в конце марки букву Ли отличаются повышенной жидкотекучестью за счет введения специальных добавок (ВТ5Л, ВТ6Л, ВТ14Л). Деформируемые и литейные сплавы могут упрочняться термической обработкой, состоящей из закалки и искусственного старения. Титановые сплавы по сравнению с другими легкими металлами обладают наибольшей прочностью (σв=700…1400 МПа), коррозионной и теплостойкостью, высоким сопротивлением ползучести; однако они примерно в 25–90 раз дороже рядовой стали и обладают вдвое меньшей жесткостью, поэтому их применение экономически и технически оправдано только в агрессивных средах (сосуды и трубы для химических аппаратов, корпуса атомных подводных лодок, лопатки турбин, обтекатели сверхзвуковых самолетов, медицинские протезы и т.п.).
Медь – металл красно-розового цвета с температурой плавления 1083 оС; имеет плотность 8,94 г/см3; очень хорошо проводит электрический ток и тепло, уступая только серебру. Медь легко деформируется и паяется; но плохо сваривается и обрабатывается резанием, дает большую усадку при литье. Промышленность выпускает медь в виде листов, фольги, труб, прутков и проволоки для электротехнической, радиоэлектронной и др. отраслей промышленности. В зависимости от химического состава установлены следующие марки меди: М00, М0, М1, М2, М3, М4 с содержанием Cu от 99,99 до 99,0 %, соответственно. Для повышения эксплуатационных свойств медь легируют различными элементами, для обозначения которых применяют следующие буквы: А – алюминий, Б – бериллий, Ж – железо, К – кремний, Мц – марганец, Н – никель, О – олово, С – свинец, Ф – фосфор, Х – хром, Ц – цинк и т.д. По технологии получения заготовок медные сплавы традиционно делят на деформируемые и литейные, а по химическому составу – на латуни и бронзы: Латунь – сплав на основе меди и цинка, но в нее могут входить и другие элементы; Бронза – сплав меди с другими элементами, в числе которых, но наряду с другими, может быть и цинк. Обозначение латуней начинается с буквы Л, а бронз – с букв Бр; далее следует сочетание букв и цифр; цифры, следующие за буквами, указывают содержание легирующих элементов в %. При этом в деформируемых латунях и бронзах сначала перечисляют все буквы, а затем следуют цифры через черточку, например, латунь ЛАЖ60-1-1 содержит 60 % Cu, 1 % Al, 1 % Fe, остальное Zn, а бронза БрОЦ4-3 – 4 % Sn, 3 % Zn, остальное Cu; в литейных сплавах цифры следуют непосредственно после букв, например, латунь ЛЦ30А3 содержит 30 % Zn, 3 % Al, остальное Cu, а бронза БрО3Ц12С5 – 3 % Sn, 12 % Zn, 5 % Pb, остальное Cu. Латуни и бронзы за счет повышенного содержания отдельных элементов приобретают специфические технологические и эксплуатационные свойства: - латуни с высоким содержанием меди (Л96 – томпак, Л85 – полутомпак) обладают высокой пластичностью и теплопроводностью, а также пониженной склонностью к коррозионному растрескиванию; легко обрабатываются давлением в холодном и горячем состоянии; используются для штамповки деталей сложной формы; - латуни с высоким содержанием цинка (Л59, ЛС59-1 – автоматная латунь, Л60, Л62) обладают более высокой прочностью и очень хорошо обрабатываются резанием; применяются для изготовления мелких сложных деталей на станках-автоматах; - оловянные латуни (ЛО62-1, ЛО70-1 – морские латуни) устойчивы против коррозии в морской воде; - оловянные бронзы (БрОЦ4-3, БрО4Ц4С17 и др.) обладают высокими упругими и антифрикционными свойствами; используются для изготовления пружин, мембран, втулок, вкладышей подшипников, червячных пар и т.п.; - алюминиевые бронзы (БрАЖ9-4, БрА10Ж3Мц2 и др.) хорошо сопротивляются коррозии в морской воде и тропическом климате, имеют высокие механические и технологические свойства; используются для изготовления арматуры и антифрикционных деталей - кремнистые бронзы (типа БрКМц3-1) обладают высокими упругими и технологическими свойствами; применяются при изготовлении приборных пружин, работающих в морской воде и др. агрессивных средах; - бериллиевые бронзы (БрБ2, БрБНТ1,7 и др.) обладают уникальными упругими и антифрикционными свойствами; используются для изготовления ответственных пружин, мембран и др. упругих элементов в точных приборах. Механические свойства некоторых медных сплавов, например, алюминиевой латуни и бериллиевой бронзы могут быть существенно улучшены путем термической обработки, состоящей из закалки и искусственного старения. Легирование меди никелем значительно повышает ее механические свойства, коррозионную стойкость, электросопротивление и термоэлектрические характеристики. Применяющиеся в промышленности медно-никелевые сплавы можно условно разделить на две основные группы: коррозионностойкие и электротехнические: - в первую группу входят сплавы под названием мельхиор (МН19, МНЖМц30-1-1), нейзильбер (МНЦ15-20, МНЦС16-29-1,8) и куниаль (МНА13-3, МНА6-1,5), обладающие повышенной прочностью, хорошей обрабатываемостью давлением, высокой коррозионной стойкостью в пресной и морской воде, органических кислотах и др. агрессивных средах; - во вторую группу входят термоэлектродные сплавы для термопар – константан (МНМц40-1,5) и изготовления компенсационных проводов к термопарам (МН0,6; МН16), а также манганин (МНМц3-12), используемый для создания прецизионных катушек электросопротивления, т. к. он обладает малым температурным коэффициентом сопротивления. Стоимость меди и сплавов на ее основе в зависимости от чистоты и содержания легирующих элементов в большинстве случаев в 8–35 раз превышает стоимость рядовой стали.
Дата добавления: 2014-01-07; Просмотров: 740; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |