Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Расчет статистических характеристик по сгруппированным данным

Класс x, % Частота n i Номер класса xi Произведения Сумма частот S ni
30-32   -5 -10   -250    
32-34   -4 -24   -376    
34-36   -3 -27   -243    
36-38   -2 -28   -112    
38-40   -1 -20   -20    
40-42              
42-44              
44-46              
46-48              
48-50              
50-52              
52-54              
54-56              
               
             
Cумма          
Среднее 0,56 6,80 14,33 132,30
               
             
Моменты m 1 m 2 m 3 m 4
                 

Между формулами (2.14) и (2.17) имеются различия. Так, в формулах (2.17) появляется размер классов h, играющий роль масштабного множителя, и поправки Шеппарда, которые возник ли из-за того, что внутри классов нивелированы различия между отдельными значениями.

Поправка Шеппарда ко второму центральному моменту – h /12, к третьему – m 1 h 2, к четвертому .

По данным табл.2.5 вычисляем статистические характеристики:

= 41 + 0,56×2 = 42,12; m2 = (6,80 – 0,562 – 1/12)22 = 25,6;

m3 = (14,33 – 3×6,80×0,56 + 2×0,563)23 – 0,56×22 = 23,82;

m4 = (132,3 – 4×14,33×0,56 +

+ 6×6,80×0,562 – 3×0,564)24 – (6,80 – 0,56)/2×22 +

+ 7/240×24 = 1790,7;

s2 = 25,6; s = 5,06; s3 = 129,5; s4 = 655,36;

V = 5,06/42,12 = 0,120 = 12,0 %; A = 23,82/129,5 = 0,184;

E = 1790,7/655,36 – 3 = –0,268.

Медиану в сгруппированных данных находят линейной интерполяцией в том классе, где нарастающая сумма частот (последняя графа табл.2.5) переходит через половину общего числа значений n. В рассматриваемом примере из 147 значений средний член имеет порядковый номер (147 + 1)/2 = 74. Следовательно, медиана заключена в классе 40-42, где находятся порядковые номера с 52 по 76. Обозначим начало класса x н = 40, число значений в классе ni = 25. Порядковый номер медианы в классе найдем как разность n т = 74 – 51 = 23.

Тогда медиана

(2.18)

Подставляя данные, получим x med = 40 + 23/25×2 = 41,84.

Один из приемов нахождения моды основан на параболической интерполяции частот по трем соседним классам, включая класс с максимальной частотой.

В рассматриваемом примере это будут классы 38-40, 40-42, 42-44 с частотами соответственно 20, 25, 21.

Обозначим частоты этих классов n 1, n 2, n 3.

Тогда мода

, (2.19)

где x 0 – середина класса с максимальной частотой.

Подставляя численные значения, найдем

.

Подведем итог расчета статистических характеристик: среднее значение = 42,12; медиана x med = 41,84; мода x mod = 41,11; дисперсия s2 = 25,6; среднеквадратичное отклонение s = 5,06; коэффициент вариации V = 12,0 %; асимметрия A = 0,184; эксцесс E = –0,268.

 

 

Геологические приложения одномерной статистической модели

<== предыдущая лекция | следующая лекция ==>
Приклади застосування формули Тейлора-Маклорена | Точечная оценка погрешности среднего значения
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 352; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.