Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Приклади застосування формули Тейлора-Маклорена

Приклад 11.2. Обчислити границю: .

Розв’язання. Так як, то

. Тому,

.

Приклад 11.3. Обчислити величину з точністю до .

Розв’язання. З теореми 11.3 випливає, що

Отже,

де величина буде похибкою даного наближення. Очевидно, що множник , тому абсолютну величину похибки можна оцінити нерівністю: .

Легко побачити, що при . Таким чином, застосувавши метод перебору, можна розв’язати нерівність:

.

Отже у формулі наближення досить взяти сім перших додатків, щоб гарантовано отримати похибку наближення за абсолютною величиною меншою ніж 0.001, тобто,

.

 

 

<== предыдущая лекция | следующая лекция ==>
Теорема 11.3.( Пеано про формулу Тейлора ) | Расчет статистических характеристик по сгруппированным данным
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 350; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.