Антифрикционные (подшипниковые) сплавы на оловянной, свинцовой, цинковой и алюминиевой основах
Антифрикционные сплавы применяют для заливки вкладышей подшипников скольжения. Эти сплавы должны иметь достаточную твердость, но не очень высокую, чтобы не вызывать сильного износа вала; сравнительно легко деформироваться под влиянием местных напряжений, т. е. быть пластичным; удерживать смазочный материал на поверхности; иметь с малый коэффициент трения между валом и подшипником. Температура плавления не должна быть высокой и сплавы должны обладать хорошей теплопроводностью и устойчивостью к коррозии. для обеспечения этих свойств структура антифрикционных сплавов должна быть гетерогенной, состоящей из мягкой и пластичной основы и включений более твердых частиц. Наиболее широко применяют сплавы на оловянной и свинцовой основе (баббиты), сплавы на цинковой и алюминиевой основе, а также медно-свинцовые сплавы. Оловянные и свинцовые баббиты. В таблице приведены состав и назначения часто применяемых баббитов. Оловянные баббиты используются в подшипниках турбин крупных судовых дизелей. Таблица 61
Химический состав (по легирующим элементам) и назначение подшипниковых сплавов- баббитов
Баббиты Б88 и Б83 являются многокомпонентными сплавами, но основой служит система Sn-Sb. Мягкая основа сплава - a- твердый раствор сурьмы в олове, а твердые кристаллы - b¢-фаза; эта фаза представляет твердый раствор на основе химического соединения SnSb. Сурьма и олово отличаются по плотности, поэтому сплавы этих металлов способны к значительной ликвации. для предупреждения этого дефекта в сплав вводят медь образуя соединение Cu3Sn с более высокой температурой плавления. Оно препятствуют распространению ликвации и повышают износостойкость. Свинцовые баббиты применяют для менее нагруженных подшипников. Антифрикционные и механические свойства баббитов повышаются при введение в их состав никеля, кадмия и мышьяка. Никель упрочняет a-раствор. Кадмий с мышьяком образует соединения AsCd, которые служат зародышами для формирования соединения SnSb. Некоторое применение нашел сплав свинца с сурьмой и небольшой добавкой меди БС. На железнодорожном транспорте большое распространение получили кальциевые баббиты. Состав кальциевых баббитов приведен в таблице 62.
Таблица 62
Химический состав1 кальциевых баббитов, %
Сплав
Ca
Na
Sn
Mg
Al
БКА БК2 БК2Ш
0,92-1,15 0,3-0,55 0,65-0,9
0,7-0,9 0,2-0,4 0,7-0,9
- 1,5-2,1 1,5-2,1
- 0,06-0,11 0,11-0,16
0,5-0,2 - -
1 Остальное Pb
Сплавы БК принадлежат к системе Pb - Ca - Na. Мягкой составляющей баббитов является a-фаза (твердый раствор Ca и Na в Pb), а твердой составляющей - кристаллы Pb3Ca. Баббиты, имея небольшую прочность могут применяться только подшипниках, имеющих прочный стальной (чугунный) или бронзовый корпус. Повышенные антифрикционные свойства и высокое сопротивление усталостным разрушениям обеспечивают новые триметаллические подшипники. Они нашли широкое применение в автомобиле строении. Цинковые антифрикционные сплавы. Чаще применяют сплавы ЦАМ10-5 и ЦАМ9,5-1,5, содержащие кроме алюминия и меди 0,03-0,06 % Mg. В литом виде сплавы применяются для монометаллических вкладышей, втулок и т.д.; сплав ЦАМ 10-5 применяют для отливки биметаллических изделий со стальным корпусом. В деформированном виде сплав ЦАМ 9,5-1,5 используют для получения биметаллических полос со сталью и алюминиевыми сплавами методом проката и последующей штамповки вкладыша. Алюминиевые антифрикционные (подшипниковые) сплавы. В таблице приведены алюминиевые сплавы для изготовления подшипников. Основными компонентами сплава являются олово, медь, никель и кремний, образующий с алюминием гетерогенные структуры. Чем больше в сплаве олова, тем выше его антифрикционные свойства, но она не должна превышать 10-12 %, так как создается грубая сетка оловянной составляющей, что снижает износостойкость и сопротивление усталости при повышенных температурах. В деформированных сплавах эта оловянная составляющая представлена в виде зернистых включений, что значительно улучшает антифрикционные свойства. Таблица 63
Химический состав (по легирующим элементам) и механическим свойства1 некоторых антифрикционных алюминиевых сплавов
Сплавы АО3 и АО9-2 применяют для литья монометаллических вкладышей и втулок толщиной не более 10 мм. Сплавы АО20-1 и АН-2,5 предназначаются для получения биметаллической ленты со сталью методом прокатки с последующей штамповкой вкладышей. При работе в тяжело нагруженных скоростных подшипниках на рабочую поверхность сплавов наносится слой олова или другого мягкого металла. Подшипники работают при нагрузке не более 200- 300 МПа и окружной скорости 15-20 м/с. Разработанный сплав АММгК-1, содержащий магний, кремний, титан, марганец и олово. Применение этого сплава вместо алюминиевых сплавов для подшипников скольжения обеспечивает коэффициент трения 0,007-0,01, увеличение износостойкости в 1,5 - 2 раза, а противозадирной стойкости в 2 раза.
22. Антифрикционные (подшипниковые) сплавы на оловянной, свинцовой, цинковой и алюминиевой основах Вопросы для самопроверки
1. Какие требования предъявляются к антифрикционным сплавам?
2. Укажите марки (состав), структуру и применение оловянных и свинцовых баббитов.
3. Когда применяются цинковые и алюминиевые антифрикционные сплавы?
4. Укажите строение, достоинства и недостатки триметаллических (трехслойных) подшипников.
24. Конструкционные порошковые материалы
Порошковые материалы, изготовленные путем прессования металлических порошков в изделия необходимой формы и размеров и последующего спекания сформованных изделий в вакууме или защитной атмосфере при температуре 0,75-0,8 Тпл. Различают пористые и компактные порошковые материалы. Пористые называют материалы, в которых после окончательной обработки сохраняются 10 -30 % остаточной пористости. Эти сплавы используют главным образом для изготовления антифрикционных изделий (подшипников, втулок) и фильтров. Подшипники из порошковых сплавов могут работать без принудительного смазывания за счет "выпотевания" масла, находящегося в порах. Подшипники изготовляются из сплавов железа и 1-7% графита (ЖГр1, ЖГр3, ЖГр7) и бронзографита, содержащего 8-10 % Sn и 2-4 % графита (БрОГр10-2, БрОГр8-4). Коэффициент трения железографита по стали при смазке 0,07 - 0,09. Подшипники из железографита применяют при допустимой нагрузке не более 1000 - 1500 МПа и максимальной температуре 100 - 2000С. Коэффициент терния бронзографита по стали без смазывания 0,04 0,07 и со смазкой 0,05 - 0,007. Допустимая нагрузка 400 - 500 МПа и рабочая температура 200 - 2500С. Таблица 67
Механические свойства подшипниковых материалов
Материалы
sB, МПа
НВ
Железографит
180-300
60-120
Бронзографит
30-50
25-50
Они могут использоваться и как фрикционные материалы, только при этом для повышения коэффициента трения в состав вводят карбид кремния, бора, тугоплавкие оксиды. Компоненты твердого смазочного материала служат графит, свинец, сульфиды и др. Коэффициент трения по чугуну (трение без смазочного материала) для материала на железной основе составляет 0,18- 0,40, а медной основе - 0,17-0,25. Фрикционные сплавы на медной основе применяют для условий жидкостного трения в паре с закаленными стальными деталями при давлении до 400 МПа и скорости скольжения до 40 м/с с максимальной температурой 300 - 3500С. Типичным фрикционным материалом на основе меди является сплава МК5.Для работы в условиях трения без смазочного материала применяют материалы на железной основе ФМК-11. Широко применяют порошковые материалы для фильтрующих изделий. Фильтры в виде втулок, труб, пластин из порошков никеля, железа, титана, алюминия, коррозионной стали, бронзы и других материалов с пористостью 45 - 50 % (размер пор 2 - 20 мкм) используют для очистки жидкостей и газов от твердых примесей. В электротехнике и радиотехнике применяют порошковые магниты на основе Fe-Ni-Al - сплавы. Все больше порошковая металлургия применяется для изготовления специальных сплавов: жаропрочных на никелевой основе, дисперсно-упрочненных на основе никеля, алюминия, титана и хрома. Методом порошковой металлургии получают различные материала на основе карбидов вольфрама, молибдена и циркония. Спеченные алюминиевые сплавы (САС) применяют тогда, когда путем литья трудно получить соответствующий сплав с особыми физическими свойствами, содержащий большое количество легирующих элементов, из которых делают детали приборов, работающих в паре со сталью при температуре 20 -2000С, требующие сочетание низкого коэффициента линейного расширения и малой теплопроводности. В оптико-механических приборах применяют высокопрочные порошковые сплавы системы Al-Zn-Mg-Cu (ПВ90, ПВ90Т1). Эти сплавы обладают высокими механическими свойствами, хорошей обрабатываемостью резанием и релаксационной стойкостью. Изделия из этих сплавов подвергают термообработке по режиму Т1 и Т2. Все более широкое применение получают компактные материалы (1-3% пористости) из порошков углеродистой и легированной стали, бронз, латуней, сплавов алюминия и титана для изготовления всевозможных шестерен, кулачков, кранов, корпусов подшипников, деталей автоматических передач. Свойства сталей, полученных из порошков после термической обработки, во многих случаях уступают свойствам деталей, полученных обычными металлургическими методами и поэтому рекомендовать порошковую технологию для высоконагруженных стальных деталей нельзя. Сплавы на основе цветных металлов нашли широкое применение в приборостроении электротехнической промышленности и электронной технике. Так же как и обычные сплавы, порошковые сплавы на основе цветных металлов обладают высокой теплопроводностью и электропроводимостью, коррозионной стойкостью, немагнитные, хорошо обрабатываются резанием и давлением. Порошковая металлургия позволяет увеличить коэффициент использования металла и повысить производительность труда. Применение порошковых материалов рекомендуются при изготовлении деталей простой симметрической формы, малых масс и размеров. Конструктивные формы деталей не должны содержать отверстия под углом к оси заготовки, выемок и внутренних полостей и выступов. Конструкция и форма детали должны позволять равномерно заполнять полость пресс-формы порошками, их уплотнение, распределение напряжений и температуры при прессовании и удалении изделия из пресс-формы.
24. Конструкционные порошковые материалы Вопросы для самопроверки
1. Какие достоинства и недостатки порошковой металлургии?
2. Какие Вы знаете порошковые антифрикционные и фрикционные материалы?
3. Как влияет пористость на механические свойства порошковых материалов?
4. Опишите свойства, технологию обработки и применение конструкционных порошковых материалов.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав!Последнее добавление