Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Антифрикционные (подшипниковые) сплавы на оловянной, свинцовой, цинковой и алюминиевой основах

Читайте также:
  1. Алюминиевые сплавы
  2. Алюминиевые сплавы, их свойства и особенности работы
  3. Алюминий и его сплавы
  4. Алюминий и его сплавы
  5. АЛЮМИНИЙ И ЕГО СПЛАВЫ
  6. Алюминий и сплавы на его основе, маркировка, свойства и область применения
  7. Бериллий и сплавы на его основе, маркировка, свойства и область применения
  8. Двухкомпонентные сплавы золота
  9. Деформируемые алюминиевые сплавы
  10. Деформируемые алюминиевые сплавы, упрочняемые термической обработкой
  11. Деформируемые сплавы

Антифрикционные сплавы применяют для заливки вкладышей подшипников скольжения. Эти сплавы должны иметь достаточную твердость, но не очень высокую, чтобы не вызывать сильного износа вала; сравнительно легко деформироваться под влиянием местных напряжений, т. е. быть пластичным; удерживать смазочный материал на поверхности; иметь с малый коэффициент трения между валом и подшипником.
Температура плавления не должна быть высокой и сплавы должны обладать хорошей теплопроводностью и устойчивостью к коррозии. для обеспечения этих свойств структура антифрикционных сплавов должна быть гетерогенной, состоящей из мягкой и пластичной основы и включений более твердых частиц.
Наиболее широко применяют сплавы на оловянной и свинцовой основе (баббиты), сплавы на цинковой и алюминиевой основе, а также медно-свинцовые сплавы.
Оловянные и свинцовые баббиты. В таблице приведены состав и назначения часто применяемых баббитов. Оловянные баббиты используются в подшипниках турбин крупных судовых дизелей.
Таблица 61

Химический состав (по легирующим элементам) и назначение
подшипниковых сплавов- баббитов


Баббиты Б88 и Б83 являются многокомпонентными сплавами, но основой служит система Sn-Sb.
Мягкая основа сплава - a- твердый раствор сурьмы в олове, а твердые кристаллы - b¢-фаза; эта фаза представляет твердый раствор на основе химического соединения SnSb. Сурьма и олово отличаются по плотности, поэтому сплавы этих металлов способны к значительной ликвации. для предупреждения этого дефекта в сплав вводят медь образуя соединение Cu3Sn с более высокой температурой плавления. Оно препятствуют распространению ликвации и повышают износостойкость.
Свинцовые баббиты применяют для менее нагруженных подшипников.
Антифрикционные и механические свойства баббитов повышаются при введение в их состав никеля, кадмия и мышьяка. Никель упрочняет a-раствор. Кадмий с мышьяком образует соединения AsCd, которые служат зародышами для формирования соединения SnSb. Некоторое применение нашел сплав свинца с сурьмой и небольшой добавкой меди БС.
На железнодорожном транспорте большое распространение получили кальциевые баббиты. Состав кальциевых баббитов приведен в таблице 62.

Таблица 62

Химический состав1 кальциевых баббитов, %

Сплав Ca Na Sn Mg Al
БКА БК2 БК2Ш 0,92-1,15 0,3-0,55 0,65-0,9 0,7-0,9 0,2-0,4 0,7-0,9 - 1,5-2,1 1,5-2,1 - 0,06-0,11 0,11-0,16 0,5-0,2 - -
1 Остальное Pb


Сплавы БК принадлежат к системе Pb - Ca - Na. Мягкой составляющей баббитов является a-фаза (твердый раствор Ca и Na в Pb) , а твердой составляющей - кристаллы Pb3Ca.
Баббиты, имея небольшую прочность могут применяться только подшипниках, имеющих прочный стальной (чугунный) или бронзовый корпус. Повышенные антифрикционные свойства и высокое сопротивление усталостным разрушениям обеспечивают новые триметаллические подшипники. Они нашли широкое применение в автомобиле строении.
Цинковые антифрикционные сплавы. Чаще применяют сплавы ЦАМ10-5 и ЦАМ9,5-1,5, содержащие кроме алюминия и меди 0,03-0,06 % Mg . В литом виде сплавы применяются для монометаллических вкладышей, втулок и т.д.; сплав ЦАМ 10-5 применяют для отливки биметаллических изделий со стальным корпусом.
В деформированном виде сплав ЦАМ 9,5-1,5 используют для получения биметаллических полос со сталью и алюминиевыми сплавами методом проката и последующей штамповки вкладыша.
Алюминиевые антифрикционные (подшипниковые) сплавы. В таблице приведены алюминиевые сплавы для изготовления подшипников. Основными компонентами сплава являются олово, медь, никель и кремний, образующий с алюминием гетерогенные структуры.
Чем больше в сплаве олова, тем выше его антифрикционные свойства, но она не должна превышать 10-12 %, так как создается грубая сетка оловянной составляющей, что снижает износостойкость и сопротивление усталости при повышенных температурах. В деформированных сплавах эта оловянная составляющая представлена в виде зернистых включений, что значительно улучшает антифрикционные свойства.
Таблица 63



Химический состав ( по легирующим элементам) и механическим свойства1
некоторых антифрикционных алюминиевых сплавов

 

Сплавы АО3 и АО9-2 применяют для литья монометаллических вкладышей и втулок толщиной не более 10 мм.
Сплавы АО20-1 и АН-2,5 предназначаются для получения биметаллической ленты со сталью методом прокатки с последующей штамповкой вкладышей.
При работе в тяжело нагруженных скоростных подшипниках на рабочую поверхность сплавов наносится слой олова или другого мягкого металла.
Подшипники работают при нагрузке не более 200- 300 МПа и окружной скорости 15-20 м/с.
Разработанный сплав АММгК-1, содержащий магний, кремний, титан, марганец и олово. Применение этого сплава вместо алюминиевых сплавов для подшипников скольжения обеспечивает коэффициент трения 0,007-0,01, увеличение износостойкости в 1,5 - 2 раза, а противозадирной стойкости в 2 раза.

 

22. Антифрикционные (подшипниковые) сплавы на оловянной, свинцовой, цинковой и алюминиевой основах
Вопросы для самопроверки

1. Какие требования предъявляются к антифрикционным сплавам?

2. Укажите марки (состав), структуру и применение оловянных и свинцовых баббитов.

3. Когда применяются цинковые и алюминиевые антифрикционные сплавы?

4. Укажите строение, достоинства и недостатки триметаллических (трехслойных) подшипников.

 

24. Конструкционные порошковые материалы

Порошковые материалы, изготовленные путем прессования металлических порошков в изделия необходимой формы и размеров и последующего спекания сформованных изделий в вакууме или защитной атмосфере при температуре 0,75-0,8 Тпл.
Различают пористые и компактные порошковые материалы.
Пористые называют материалы, в которых после окончательной обработки сохраняются 10 -30 % остаточной пористости. Эти сплавы используют главным образом для изготовления антифрикционных изделий (подшипников, втулок) и фильтров.
Подшипники из порошковых сплавов могут работать без принудительного смазывания за счет "выпотевания" масла, находящегося в порах.
Подшипники изготовляются из сплавов железа и 1-7% графита (ЖГр1, ЖГр3, ЖГр7) и бронзографита, содержащего 8-10 % Sn и 2-4 % графита (БрОГр10-2, БрОГр8-4). Коэффициент трения железографита по стали при смазке 0,07 - 0,09. Подшипники из железографита применяют при допустимой нагрузке не более 1000 - 1500 МПа и максимальной температуре 100 - 2000С. Коэффициент терния бронзографита по стали без смазывания 0,04 0,07 и со смазкой 0,05 - 0,007. Допустимая нагрузка 400 - 500 МПа и рабочая температура 200 - 2500С.
Таблица 67

Механические свойства подшипниковых материалов

 

Материалы sB , МПа НВ
Железографит 180-300 60-120
Бронзографит 30-50 25-50


Они могут использоваться и как фрикционные материалы, только при этом для повышения коэффициента трения в состав вводят карбид кремния, бора, тугоплавкие оксиды. Компоненты твердого смазочного материала служат графит, свинец, сульфиды и др. Коэффициент трения по чугуну (трение без смазочного материала) для материала на железной основе составляет 0,18- 0,40, а медной основе - 0,17-0,25.
Фрикционные сплавы на медной основе применяют для условий жидкостного трения в паре с закаленными стальными деталями при давлении до 400 МПа и скорости скольжения до 40 м/с с максимальной температурой 300 - 3500С. Типичным фрикционным материалом на основе меди является сплава МК5.Для работы в условиях трения без смазочного материала применяют материалы на железной основе ФМК-11.
Широко применяют порошковые материалы для фильтрующих изделий. Фильтры в виде втулок, труб, пластин из порошков никеля, железа, титана, алюминия, коррозионной стали, бронзы и других материалов с пористостью 45 - 50 % (размер пор 2 - 20 мкм) используют для очистки жидкостей и газов от твердых примесей.
В электротехнике и радиотехнике применяют порошковые магниты на основе Fe-Ni-Al - сплавы. Все больше порошковая металлургия применяется для изготовления специальных сплавов: жаропрочных на никелевой основе, дисперсно-упрочненных на основе никеля, алюминия, титана и хрома. Методом порошковой металлургии получают различные материала на основе карбидов вольфрама, молибдена и циркония.
Спеченные алюминиевые сплавы (САС) применяют тогда, когда путем литья трудно получить соответствующий сплав с особыми физическими свойствами, содержащий большое количество легирующих элементов, из которых делают детали приборов, работающих в паре со сталью при температуре 20 -2000С, требующие сочетание низкого коэффициента линейного расширения и малой теплопроводности.
В оптико-механических приборах применяют высокопрочные порошковые сплавы системы Al-Zn-Mg-Cu (ПВ90, ПВ90Т1). Эти сплавы обладают высокими механическими свойствами, хорошей обрабатываемостью резанием и релаксационной стойкостью. Изделия из этих сплавов подвергают термообработке по режиму Т1 и Т2.
Все более широкое применение получают компактные материалы (1-3% пористости) из порошков углеродистой и легированной стали, бронз, латуней, сплавов алюминия и титана для изготовления всевозможных шестерен, кулачков, кранов, корпусов подшипников, деталей автоматических передач.
Свойства сталей, полученных из порошков после термической обработки, во многих случаях уступают свойствам деталей, полученных обычными металлургическими методами и поэтому рекомендовать порошковую технологию для высоконагруженных стальных деталей нельзя.
Сплавы на основе цветных металлов нашли широкое применение в приборостроении электротехнической промышленности и электронной технике. Так же как и обычные сплавы, порошковые сплавы на основе цветных металлов обладают высокой теплопроводностью и электропроводимостью, коррозионной стойкостью, немагнитные, хорошо обрабатываются резанием и давлением.
Порошковая металлургия позволяет увеличить коэффициент использования металла и повысить производительность труда. Применение порошковых материалов рекомендуются при изготовлении деталей простой симметрической формы, малых масс и размеров. Конструктивные формы деталей не должны содержать отверстия под углом к оси заготовки, выемок и внутренних полостей и выступов. Конструкция и форма детали должны позволять равномерно заполнять полость пресс-формы порошками, их уплотнение, распределение напряжений и температуры при прессовании и удалении изделия из пресс-формы.

24. Конструкционные порошковые материалы
Вопросы для самопроверки

1. Какие достоинства и недостатки порошковой металлургии?

2. Какие Вы знаете порошковые антифрикционные и фрикционные материалы?

3. Как влияет пористость на механические свойства порошковых материалов?

4. Опишите свойства, технологию обработки и применение конструкционных порошковых материалов.

 

<== предыдущая лекция | следующая лекция ==>
| Антифрикционные (подшипниковые) сплавы на оловянной, свинцовой, цинковой и алюминиевой основах

Дата добавления: 2014-01-07; Просмотров: 813; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:



studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ip: 54.156.67.122
Генерация страницы за: 0.006 сек.