КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Методы наведения ракет. Метод пропорционального сближения
Метод пропорционального сближения ракеты с целью. Рассмотрим рис.4, на котором представлены текущие положения цели и ракеты, а также векторы их скоростей. Линию ракета-цель часто называют линией визирования. Введем неподвижную координатную ось ОО', относительно которой будем отсчитывать углы η и ζ. При использовании метода пропорционального сближения команда управления должна приводить к вращению вектора скорости ракеты с угловой скоростью, выражаемой соотношением
т.е. угловая скорость поворота вектора скорости ракеты должна быть пропорциональна угловой скорости вращения линии визирования. Коэффициент пропорциональности (навигационная постоянная) K > 1. Оптимальное значение K находится в пределах от 4 до 6. Если цель не маневрирует, то при управлении ракетой в соответствии с (4.2)
Рис.4. К описанию метода пропорционального сближения Покажем справедливость данного утверждения. Для этого разложим скорости
Рис.5. Компоненты скоростей цели и ракеты
Как следует из рисунка 5, угловая скорость линии визирования, обязанная составляющим скоростей
Если
величина Этот процесс продолжается до тех пор, пока неравенство (4.4) не преобразуется в равенство
При этом Отсутствие угловой скорости
Рис.6. Положения скоростей V Р1 и V ц1 при стрельбе вдогон
Возвращаясь к рис.5, предположим, что в отличие от (4.4)
Тогда Таким образом, в любом случае независимо от знака разности
при использовании правила (4.2). Проведенное рассмотрение процесса наведения ракеты на неманеврирующую цель позволяет сделать следующие выводы: - на начальном участке наведения ракета совершает маневр для достижения соотношения (4.5); - в дальнейшем ракета движется почти прямолинейно в точку встречи. Прямолинейное движение ракеты выгодно как с точки зрения достижения максимальной дальности полета, так и для экономного расходования топлива. Сделанная оговорка о почти прямолинейном движении ракеты связана с необходимостью парирования атмосферных возмущений, воздействующих на ракету и цель, а также из-за погрешностей системы управления ракетой и маневра цели. Указанные факторы могут привести к промаху ракеты. Промахом называется наименьшее расстояние между ракетой и целью. Если промах не превышает допустимой величины ( Найдем связь промаха с ошибкой определения угловой скорости линии визирования Ω. Для этого введем понятие минимальной дальности системы управления ракетой (мертвой зоны). Мертвая зона (r min) - это расстояние между ракетой и целью, начиная с которого движение ракеты можно считать неуправляемым. Появление мертвой зоны связано с инерционностью системы управления, которую можно характеризовать временем запаздывания τз. Рассогласование, появившееся на входе системы за время τз до встречи ракеты с целью, не будет обработано. Мертвую зону можно выразить как
Предположим, что в какой-либо точке траектории ракеты при дальности до цели, равной τз, появляется ошибка измерения скорости линии визирования
Считая с этого момента времени ракету неуправляемой, примем, что вектор скорости его не изменяет своей величины. Время, затрачиваемое на сближение с целью, равно
поскольку знаменатель (4.10) представляет собой скорость сближения ракеты и цели. В течение времени τз ракета и цель разойдутся на расстояние, равное промаху С учетом формул (4.9) и (4.10) получаем выражение для промаха
Из (4.11) можно определить промах при заданной величине Ω или допустимое значение Ω при заданных промахе и других величин в этой формуле. Рассчитаем в качестве примера допустимое значение Ωдоп, если hдоп = 10 м, rmin = 1 км и скорость сближения
Если цель маневрирует, то для поддержания приближенного равенства Лекция 17. ОСНОВЫ РАДИОУПРАВЛЕНИЯ. СПОСОБЫ УПРАВЛЕНИЯ
Дата добавления: 2014-01-07; Просмотров: 19494; Нарушение авторских прав?; Мы поможем в написании вашей работы! |