КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Введение. В последующие годы связь развивалась по пути цифровизации всех видов информации
В последующие годы связь развивалась по пути цифровизации всех видов информации. Это стало генеральным направлением, обеспечивающим экономичные методы не только ее передачи, но и распределения, хранения и обработки. Вслед за ИКМ-24 появляются ИКМ-30, ИКМ-120, ИКМ-480, ИКМ-1920, а затем системы передачи синхронной цифровой иерархии (СЦИ). Интенсивное развитие цифровых систем передачи объясняется существенными достоинствами этих систем по сравнению с аналоговыми системами передачи: высокой помехоустойчивостью; слабой зависимостью качества передачи от длины линии связи; стабильностью электрических параметров каналов связи; эффективностью использования пропускной способности при передаче дискретных сообщений и др. Из года в год растет в стране телефонная плотность (число телефонов на сто жителей), но пока Казахстан еще существенно отстает по этому показателю от промышленно развитых стран. Так, если в промышленно развитых странах этот показатель составляет 46 и более телефонов на 100 жителей, то в Казахстане в среднем - 21 телефон. Разработана концепция, намечены сроки ликвидации этого отставания, в результате чего к 2005 г. количество телефонов на сто жителей ожидается 36,9, а к 2010 − 47,7. На смену телеграфной связи пришли такие виды документальной электросвязи, как передача данных, электронная почта, факсимильная связь. Успешно развивается казахстанский сегмент сети Интернет, объем услуг, в котором составил 220 млн. долл. и увеличился в 2001 г. по сравнению с 2000 г. на 50 %. Растет количество наименований русскоязычных ресурсов в сети. Число регулярных пользователей в Казахстане оценивается на конец 2001 г. в 4,3 млн. человек, а количество хотя бы раз посетивших всемирную сеть превысило 12 млн. За последние два года казастанская аудитория сети Интернет выросла в 2,9 раза. Число пользователей электронной почтой за этот же период выросло в 3 раза. Однако по-прежнему основное количество пользователей сосредоточено в крупных и средних городах. Жители Алматы и Астаны составляют пятую часть казахстанской аудитории. Одновременно с ростом числа услуг связи будет меняться их качество - от простого телефонного сервиса до услуг мультимедиа, которые будут обеспечиваться интегральными цифровыми сетями связи. Особенно быстрыми темпами в мире и у нас в стране идет развитие сети мобильной радиосвязи. Человек с сотовым телефоном, не привязанный шнуром к своему месту, превратился в своеобразный символ конца века. Количество людей, пользующихся мобильными телефонами в мире, приближается к 600 млн. Что ждет нас в конце нынешнего - начале будущего столетия? Большинство специалистов сходятся во мнении, что дальнейшая эволюция телекоммуникационных технологий будет идти в направлениях увеличения скорости передачи информации, интеллектуализации сетей и обеспечения мобильности пользователей. Высокие скорости. Необходимы для передачи изображений, в том числе телевизионных, интеграции различных видов информации в мультимедийных приложениях, организации связи локальных, городских и территориальных сетей. Интеллектуальность. Позволит увеличить гибкость и надежность сети, сделает более легким управление глобальными сетями. Благодаря интеллектуализации сетей пользователь перестает быть пассивным потребителем услуг, превращаясь в активного клиента - клиента, который сможет сам активно управлять сетью, заказывая необходимые ему услуги. Мобильность. Успехи в области миниатюризации электронных устройств, снижение их стоимости создают предпосылки к глобальному распространению мобильных оконечных устройств. Это делает реальной задачу предоставления услуг связи каждому в любое время и в любом месте. В заключение отметим, что объем информации, передаваемой через информационно-телекоммуникационную инфраструктуру мира, удваивается каждые 2-3 года. Появляются и успешно развиваются новые отрасли информационной индустрии, существенно возрастает информационная составляющая экономической активности субъектов рынка и влияние информационных технологий на научно-технический, интеллектуальный потенциал и здоровье наций. Начало XXI века рассматривается как эра информационного общества, требующего для своего эффективного развития создания глобальной информационно-телекоммуникационной инфраструктуры, темпы развития которой должны быть опережающими по отношению к темпам развития экономики в целом. При этом создание российской информационно-телекоммуникационной инфраструктуры следует рассматривать как важнейший фактор подъема национальной экономики, роста деловой и интеллектуальной активности общества, укрепления авторитета страны в международном сообществе.
Лекция 1. Функциональная схема и основные элементы ЦС. Классификация сигналов
Функциональная схема, приведенная на рис. 1.2, иллюстрирует распространение сигнала и этапы его обработки в типичной системе цифровой связи (DСS). Этот рисунок является чем-то вроде плана, направляющего читателя по главам данной книги. Верхние блоки — форматирование, кодирование источника, шифрование, канальное кодирование, уплотнение, импульсная модуляция, полосовая модуляция, расширение спектра и множественный доступ — отражают преобразования сигнала на пути от источника к передатчику. Нижние блоки диаграммы — преобразования сигнала на пути от приемника к получателю информации, и, по сути, они противоположны верхним блокам. Блоки модуляции и демодуляции/детектирования вместе называются модемом. Термин "модем" часто объединяет несколько этапов обработки сигналов, показанных на рис. 1.2; в этом случае модем можно представлять как "мозг" системы. Передатчик и приемник можно рассматривать как "мускулы" системы. Для беспроводных приложений передатчик состоит из схемы повышения частоты в область радиочастот (radio frequency — RF), усилителя мощности и антенны, а приемник — из антенны и малошумящего усилителя (low-noise amplifier — LNA). Обратное понижение частоты производится на выходе приемника и/или демодулятора. На рис. 1.2 иллюстрируется соответствие блоков верхней (передающей) и нижней (принимающей) частей системы. Этапы обработки сигнала, имеющие место в передатчике, являются преимущественно обратными к этапам приемника. На рис. 1.2 исходная информация преобразуется в двоичные цифры (биты); после этого биты группируются в цифровые сообщения или символы сообщений. Каждый такой символ (mi, где i= 1,..., М) можно рассматривать как элемент конечного алфавита, содержащего М элементов. Следовательно, для М = 2 символ сообщения тi является бинарным (т.е. состоит из одного бита). Несмотря на то что бинарные символы можно классифицировать как М -арные (с М= 2), обычно название " М -арный" используется для случаев М > 2; значит, такие символы состоят из последовательности двух или большего числа битов. (Сравните подобный конечный алфавит систем DCS с тем, что мы имеем в аналоговых системах, когда сигнал сообщения является элементом бесконечного множества возможных сигналов.) Для систем, использующих канальное кодирование (коды коррекции ошибок), последовательность символов сообщений преобразуется в последовательность канальных символов (кодовых символов), и каждый канальный символ обозначается ui. Поскольку символы сообщений или канальные символы могут состоять из одного бита или группы битов, последовательность подобных символов называется потоком битов (рис. 1.2). Рассмотрим ключевые блоки обработки сигналов, изображенные на рис. 1.2; необходимыми для систем ОСЗ являются только этапы форматирования, модуляции, демодуляции/детектирования и синхронизации. Форматирование преобразовывает исходную информацию в биты, обеспечивая, таким образом, совместимость информации и функций обработки сигналов с системой DCS. С этой точки рисунка и вплоть до блока импульсной модуляции информация остается в форме потока битов.
Рис. 1.2. Функциональная схема типичной системы цифровой связи Модуляция — это процесс, посредством которого символы сообщений или канальные символы (если используется канальное кодирование) преобразуются в сигналы, совместимые с требованиями, налагаемыми каналом передачи данных. Импульсная модуляция — это еще один необходимый этап, поскольку каждый символ, который требуется передать, вначале нужно преобразовать из двоичного представления (уровни напряжений представляются двоичными нулями и единицами) в видеосигнал (модулированный сигнал). Термин "видеосигнал" (baseband signal) определяет сигнал, спектр которого начинается от (или около) постоянной составляющей и заканчивается некоторым конечным значением (обычно, не более нескольких мегагерц). Блок импульсно-кодовой модуляции обычно включает фильтрацию с целью достижения минимальной полосы передачи. При использовании импульсной модуляции для обработки двоичных символов результирующий двоичный сигнал называется РСМ-сигналом (pulse-code modulation — импульсно-кодовая модуляция). Существует несколько типов РСМ-кодированных сигналов (описанных в главе 2); в приложениях телефонной связи эти сигналы часто называются кодами канала. При применении импульсной модуляции к небинарным символам результирующий сигнал именуется М -арным импульсно-модулированным. Существует несколько типов подобных сигналов, где основное внимание уделяется амплитудно-импульсной модуляции (pulse-amplitude modulation — РАМ). После импульсной модуляции каждый символ сообщения или канальный символ принимает форму полосового сигнала gi(t), где і = 1,..., М. В любой электронной реализации поток битов, предшествующий импульсной модуляции, представляется уровнями напряжений. Может возникнуть вопрос, почему существует отдельный блок для импульсной модуляции, когда фактически уровни напряжения для двоичных нулей и единиц уже можно рассматривать как идеальные прямоугольные импульсы, длительность каждого из которых равна времени передачи одного бита? Существует два важных отличия между подобными уровнями напряжения и видеосигналами, используемыми для модуляции. Во-первых, блок импульсной модуляции позволяет использовать бинарные и М -арные сигналы. Во-вторых, фильтрация, производимая в блоке импульсной модуляции, формирует импульсы, длительность которых больше времени передачи одного бита. Фильтрация позволяет использовать импульсы большей длительности; таким образом, импульсы расширяются на соседние временные интервалы передачи битов. Этот процесс иногда называется формированием импульсов; он используется для поддержания полосы передачи в пределах некоторой желаемой области спектра. Для систем передачи радиочастотного диапазона следующим важным этапом является полосовая модуляция (bandpass modulation); она необходима всегда, когда среда передачи не поддерживает распространение сигналов, имеющих форму импульсов. В таких случаях среда требует полосового сигнала si(t), где i = 1,..., М. Термин "полосовой" (bandpass) используется для отражения того, что видеосигнал gi(t) сдвинут несущей волной на частоту, которая гораздо больше частоты спектральных составляющих gi(t). Далее сигнал si(t) проходит через канал, причем связь между входным и выходным сигналами канала полностью определяется импульсной характеристикой канала hc(t). Кроме того, в различных точках вдоль маршрута передачи дополнительные случайные шумы искажают сигнал, так что сигнал на входе приемника r(t) отличается от переданного сигнала si(t): r(t) = si(t) * hc(t) + n(t) i = 1, …, M (1.1) где знак "*" представляет собой операцию свертки (см. приложение А), а n(t) — случайный процесс. При обработке полученного сигнала в принимающем устройстве входной каскад приемника и/или демодулятор обеспечивают понижение частоты каждого полосового сигнала r(t). В качестве подготовки к детектированию демодулятор восстанавливает ҚІ) в виде оптимальной огибающей видеосигнала z(t). Обычно с приемником и демодулятором связано несколько фильтров — фильтрование производится для удаления нежелательных высокочастотных составляющих (в процессе преобразования полосового сигнала в видеосигнал) и формирования импульса. Выравнивание можно описать как разновидность фильтрации, используемой в демодуляторе (или после демодулятора) для удаления всех эффектов ухудшения качества сигнала, причиной которых мог быть канал. Выравнивание (equalization) необходимо в том случае, если импульсная характеристика канала hc(t) настолько плоха, что принимаемый сигнал сильно искажен. Ниже приведены некоторые основные термины, часто используемые в области цифровой связи. Источник информации (information source). Устройство, передающее информацию посредством системы DCS. Источник информации может быть аналоговым или дискретным. Выход аналогового источника может иметь любое значение из непрерывного диапазона амплитуд, тогда как выход источника дискретной информации — значения из конечного множества амплитуд. Источники аналоговой информации преобразуются в источники цифровой информации посредством дискретизации или квантования. Текстовое сообщение (textual message). Последовательность символов (рис. 1.4, а). При цифровой передаче данных сообщение представляет собой последовательность цифр или символов, принадлежащих конечному набору символов или алфавиту. Знак (character). Элемент алфавита или набора символов (рис. 1.4, 6). Знаки могут представляться последовательностью двоичных цифр. Существует несколько стандартизованных кодов, используемых для знакового кодирования, в том числе код ASCII (American Standart Code for Information Interchange — Американский стандартный код для обмена информацией), код EBCDIC (Extended Binary Coded Decimal Interchange Code — расширенный двоичный код обмена информацией), код Холлерита (Hollerith code), код Бодо (Baudot code), код Муррея (Murray code) и код (азбука) Морзе (Morse code).
HOW ARE YOU? а) OK $9 567 216,73 А б) 9 H O W в)
0 0 0 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1
1 Двоичный символ (*с=1,М = 2) г) 10 Четверичный символ (К = 2, М = 4) 011 Восьмеричный символ (К = 3, М=8)
д) время
Т —длительность символа Рис.1.4. Иллюстрация терминов: а) текстовые сообщения; б) символы; в) поток битов (1-битовый код ASCII); г) символы mi, i = 1,..., М, М= 2k; д) полосовой цифровой сигнал si(t), i= 1,..., М
Двоичная цифра (binary digit) (бит) (bit). Фундаментальная единица информации для всех цифровых систем. Термин "бит" также используется как единица объема информации. Поток битов (bit stream). Последовательность двоичных цифр (нулей и единиц). Поток битов часто называют видеосигналом, или низкочастотным сигналом (baseband signal); это подразумевает, что его спектральные составляющие размещены от (или около) постоянной составляющей до некоторого конечного значения, обычно не превышающего несколько мегагерц. На рис.1.4, в сообщение "HOW" представлено с использованием семибитового кода ASCII, а поток ' битов показан в форме двухуровневых импульсов. Последовательность импульсов изображена в виде крайне стилизованных (идеально прямоугольных) сигналов с промежутками между соседними импульсами. В реальной системе импульсы никогда не будут выглядеть так, поскольку подобные промежутки абсолютно бесполезны. При данной скорости передачи данных промежутки увеличат ширину полосы, необходимую для передачи; или, при данной ширине полосы, они увеличат временную задержку, необходимую для получения сообщения. Символ (symbol) (цифровое сообщение) (digital message). Символ — это группа из Цифровой сигнал (digital waveform). Описываемый уровнем напряжения или силы тока, сигнал (импульс — для низкочастотной передачи или синусоида — для полосовой передачи), представляющий цифровой символ. Характеристики сигнала (для импульсов — амплитуда, длительность и положение или для синусоиды — амплитуда, частота и фаза) позволяют его идентифицировать как один из символов конечного алфавита. На рис. 2.4, д приведен пример полосового цифрового сигнала. Хотя сигнал является синусоидальным и, следовательно, имеет аналоговый вид, все же он именуется! цифровым, поскольку кодирует цифровую информацию. На данном рисунке цифровое значение указывает определенную частоту передачи в течение каждого интервала времени Т Скорость передачи данных (data rate). Эта величина в битах в секунду (бит/с) дается формулой R = k/Т= (1/Т) 1оg2 М (бит/с), где k бит определяют символ из М = 2 k -символьного алфавита, а Т — это длительность k -битового символа.
Дата добавления: 2014-01-07; Просмотров: 624; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |