КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Оптимальные смешанные стратегии ЛПР
Если матричная игра не имеет седловой точки (ситуации равновесия), то ее решение в чистых стратегиях становится непредсказуемым: каждому игроку можно только гарантировать, что его выигрыш при разумном поведении будет не менее нижней границы и не более верхней границы, цены игры. Матричная игра без седловой точки приводит к неустойчивости использования стратегий при многократном повторении игры. Если игра не имеет седловой точки, и применение чистых стратегий не дает оптимального решения игры. В этом случае можно получить оптимальное решение, случайным образом чередуя чистые стратегии. · Смешанной стратегией игрока называется полный набор вероятностей применения его чистых стратегий: , где , . · Смешанной стратегией игрока называется полный набор вероятностей применения его чистых стратегий: , где , . Игра приобретает случайный характер, поэтому является случайной и величина выигрыша игрока (проигрыша игрока ). Значит, можно вести речь о средней величине (математическом ожидании) выигрыша (проигрыша). Для платежной матрицы и смешанных стратегиях и средняя величина выигрыша (математическое ожидание) примет вид .
Дата добавления: 2014-01-07; Просмотров: 614; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |