![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Теория устойчивости динамических систем
Метод (или математический аппарат), который используется в синергетике, - это теория динамических систем. Математический метод синергетики, то есть теория динамических систем, основан на дифференциальных уравнениях вида
где Уравнения (5) называют также уравнениями реакции с диффузией, поскольку они, в частности, описывают изменения концентрации веществ во времени и пространстве с учетом их диффузии и химических реакций. Принимают, что процессы, описываемые уравнениями (5), протекают в ограниченном пространстве - либо одномерном (реакции в трубке длиной L), либо двухмерном (реакции в пленке шириной порядка L), либо в трехмерном (реакции в сосуде, размеры которого порядка L). В частном случае, когда все динамические переменные распределены в пространстве равномерно, мы имеем систему обыкновенных дифференциальных уравнений:
Последнее имеет место, если "длины диффузии" Уравнения (5) и/или (6) являются динамическими, т.е. их решения, вообще говоря, однозначно определяются начальными и граничными условиями и, разумеется, свойствами и параметрами самих уравнений. Казалось бы, в такой ситуации ничего неожиданного быть не должно. Тем не менее характерные для синергетики неожиданности здесь возникают в случае, когда решения динамических уравнений теряют устойчивость. Обсудим это важное свойство. Интуитивное представление об устойчивости (или неустойчивости) есть у каждого. Неустойчиво, например, состояние карандаша, поставленного на острие; неустойчиво движение шарика по гребню. В то же время движение его по ложбине устойчиво. Более точное представление дает анализ уравнений движения (и/или стационарных состояний). Этот анализ основан на исследовании поведения малых отклонений от соответствующего решения. Продемонстрируем это на примере стационарных состояний точечной системы. Стационарными являются состояния, соответствующие таким значениям переменных
Решения имеют вид:
Здесь Величины
Величины
Числа Ляпунова при этом уже не постоянны, а зависят от времени. Траектория является неустойчивой, если среди чисел Подчеркнем важное свойство: числа Ляпунова являются характеристическими (или собственными) числами системы; они не зависят от начальных условий. Таким образом, устойчивость (или неустойчивость) - внутреннее свойство исследуемой системы, а не результат внешнего воздействия. Особенность его в том, что проявляется оно только при наличии малых внешних воздействий. Обсудим два примера. Рассмотрим понятие абсолютно изолированной системы. Сейчас ясно, что его можно (и то не всегда) ввести лишь как предел неизолированной системы при стремлении к нулю величины внешнего воздействия. Для устойчивых систем такой предел существует и, следовательно, понятие остается в силе. В неустойчивых системах такой предел, вообще говоря, не существует. Действительно, предел величины Требует ревизии и понятие "причины". Обычно под причиной понимают начальные условия (или импульсные внешние воздействия), которые в соответствии с динамикой системы приводят к определенному результату - следствию. На этом языке слова "вскрыть причинно-следственные связи" означает "понять динамику промежуточных процессов". При этом негласно предполагают, что причины и следствия соизмеримы. Для устойчивых (или нейтральных) процессов это всегда имеет место. В неустойчивых процессах ситуация иная: очень малая причина приводит к следствию, которое по масштабам с причиной несоизмеримо. Обычно в таких случаях говорят, что причиной явилась неустойчивость, а не малое начальное воздействие. При этом, однако, происходит весьма существенный сдвиг понятий: в качестве причины фигурирует внутреннее свойство системы, а не внешнее воздействие. Поясним сказанное на житейском примере. Рассмотрим два случая. В первом хрустальная ваза стоит на середине стола (состояние устойчиво). Прошел некто и неловким движением толкнул вазу со стола - она разбилась. В чем причина столь печального события, или, другими словами, кто виноват? Понятно, что виноват "некто", а причина - его неловкие движения. Рассмотрим другой случай: ваза стоит на краю стола, так что чуть-чуть не падает (состояние, близкое к неустойчивому). Пролетела муха - ваза разбилась. В этом случае муху не обвиняют, а говорят, что причина событий в неустойчивом положении вазы. Виноват тот, кто ее поставил (так, чтобы никто не был виноват, в жизни обычно не бывает). Забегая несколько вперед, отметим, что в основе утверждения "событие произошло случайно" (т.е. без видимой причины) также лежит неустойчивость динамических систем.
Дата добавления: 2014-01-07; Просмотров: 717; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |