КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Дифференцирования
Метод кинематических диаграмм или метод графического Графические зависимости перемещение – время, скорость – время, ускорение – время, принято называть кинематическими диаграммами. Кинематическая диаграмма дает наглядное графическое изображение изменения одного из кинематических параметров движения в зависимости от другого. Рассмотрим построение диаграммы SB=SB(t) “перемещение – время” для ползуна кривошипно-ползунного механизма, изображенного на рис.2.3. Кривошип вращается равномерно, следовательно, ведущая точка A – палец кривошипа, в одинаковые промежутки времени проходит одинаковые участки пути. Строим две оси координат (рис. 2.2) и на оси абсцисс откладываем отрезок l в миллиметрах, изображающий время одного полного оборота кривошипа (одного цикла) T в масштабе μt. Отрезок l разбиваем на 12 равных частей и в точках 1,2,3,.….,11 откладываем параллельно оси ординат расстояния, равные перемещениям точки B от крайнего левого положения B 0 ползуна в масштабе перемещений. μ S. Если отрезки 1-1'= B 0 B 1; 2-2'= B 0 B 2 и т.д., то линейные масштабные коэффициенты плана механизма и диаграммы перемещений будут одинаковы. Рис..2.3. Диаграмма перемещений ползуна кривошипно-ползунного механизма Кривая, плавно соединяющая полученные точки 0,1',2',…..,0', представляет собой диаграмму перемещений, т.е. расстояний точки B ползуна, измеренных от левого крайнего положения SB=SB(t). Время полного оборота кривошипа Т = 60 /n [с]. Здесь n – частота вращения кривошипа, об/мин. μ t – масштаб времени, с/мм; Время Т соответствует длине отрезка l, отложенного по ос абсцисс на рис. 2.3. Масштабный коэффициент μ t времени в этой диаграмме будет равен μ t = T / l [c/мм]. Метод кинематических диаграмм применяется при анализе и синтезе механизмов в тех случаях, когда задан какой-либо закон движения точки или звена механизма в виде графической зависимости в функции времени. Обычно при построении кинематических диаграмм используют метод хорд, заменяя заданную кривую графиком в виде ломаной линии. Изобразим диаграмму “перемещение-время” для точки, движущейся прямолинейно (рис..2.4).
Рис. 2.4. Графическое дифференцирование методом хорд Для этого строим две координатные оси, и ось времени разбиваем на ряд одинаковых отрезков. Точки a, b, c и т.д., обозначающие соответствующие перемещения соединяем ломаной линией. Под диаграммой S=S(t) строим прямоугольную систему координат, и ось времени разбиваем на такие же отрезки, что и на графике перемещения. От начала координат влево откладываем отрезок H и обозначим полюс P. Из полюса Р проводим прямые Pa'||ab; Pb'||bc; Pc'||cd и т.д. Сносим полученные точки b', c', d' и т.д. на соответствующие участки времени 01, 12, 23 и т.д. и получаем ступенчатый график скорости. В середине каждого отрезка помечаем точки а 1, b 1, c 1 и т.д. и соединяем их плавной кривой. Средняя скорость на участке времени 01 (рис. 2.4,а) V 01 = Δ Ŝ μ S / [(01) ∙ μ t ] = (tgα) ∙ μ S / μ t. (2.1) Ордината 0 а′, полученная на графике скоростей (рис. 2.4,б), равна 0 а′= Н ∙ tgα. Таким образом, ордината 0 а′, также как и скорость пропорциональны тангенсу наклона хорды ломаной кривой s=s(t), следовательно, она представляет собой среднюю скорость точки, движущейся прямолинейно в каком-то масштабе μ V, который можно определить следующим образом. Из рис. 2.4,б: V 01 = 0 а′∙ μ V = (Н ∙ tgα) ∙ μ V . (2.2) Приравнивая правые части зависимостей (2.1) и (2.2) после преобразования получим формулу для определения масштаба скорости при графическом дифференцировании. μ V = μ S / (μ t ∙Н). Если точка движется по замкнутой траектории, то для графического дифференцирования ее перемещение рассматривается вдоль двух взаимно перпендикулярных осей. Графическое интегрирование осуществляется как действие, обратное графическому дифференцированию.
Дата добавления: 2014-01-07; Просмотров: 583; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |