Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод планов скоростей и ускорений

Наглядное представление о величинах и направлениях скоростей и ускорений отдельных точек механизма дают планы скоростей и ускорений.

Планом скоростей (ускорений) звена называется графическое построение, представляющее собой семейство векторов абсолютных скоростей (ускорений) точек механизма проведенных из одного общего полюса. Построение планов скоростей и ускорений основано на графическом решении векторных уравнений распределения скоростей и ускорений.

Рассмотрим два характерных примера.

Пример 1.

Две точки A и B (рис..2.5) принадлежат одному звену и расположены на расстоянии lАB.

Зависимость между скоростями точек A и B может быть представлена векторным уравнением

,

т.е. скорость точки B равна геометрической сумме скорости точки A в переносном поступательном движении и скорости точки B во вращательном относительном движении звена относительно точки A, при этом АВ, т.к. траектория точки B в относительном движении вокруг точки A есть окружность с радиусом АВ.

Изобразим скорости точек A и B в масштабе μv отрезками Ovа и Ovb, отложенными из одной точки Ov (рис. 2.6). Соединим концы отрезков (точки a и b) прямой линией. Полученный треугольник Ovab называется планом скоростей звена, а точка Ov – полюсом плана скоростей.

Рис. 2.5. Скорости точек A и B звена ABC Рис. 2.6. План скоростей звена ABC
       

 

Для определения скоростей остальных точек звена, пример точки C, можно также воспользоваться векторными уравнениями. Однако в тех случаях, когда известны скорости двух точек звена, скорости остальных точек удобнее находить, используя теорему подобия для планов скоростей.

Сформулируем теорему подобия для планов скоростей без доказательства: относительные скорости точек жесткого звена образуют на плане скоростей фигуру подобную жесткому звену; при одинаковом направлении обхода этих фигур чередование букв при их вершинах повторяется.

Так, при обходе треугольника abc в том же направлении порядок расположения букв одинаков. Таким образом, при использовании правила подобия в плане скоростей необходимо соблюдать при построении подобных фигур правило обхода контура.

Угловая скорость ω АВ определяется по формуле

,

где VBA – относительная скорость точки B во вращательном движении вокруг точки A.

Направление ω АВ можно определить, если в точке B (рис..2.5) приложить вектор .

Направление относительных скоростей определяется из плана скоростей. При этом отрезок, определяющий относительную скорость, читается обратно обозначению этой скорости. Например, вектор на плане скоростей будет представлен, как «ab», вектор как «bc».

Ускорения точек A и B связаны между собой векторным уравнением

,

т.е. ускорение точки B представляет собой геометрическую сумму ускорения точки A в переносном поступательном движении и ускорения точки B во вращательном относительном движении точки B вокруг точки A.

Полное относительное ускорение складывается в свою очередь из двух составляющих: нормального , направленного к центру относительного вращения, т.е. от точки B к точке A и касательного , направленного перпендикулярно отрезку AB (рис. 2.7).

Следовательно . Модуль нормального ускорения определяем по формуле

,

где ω АВ – угловая скорость звена ABC, которая определяется из плана скоростей, как указано выше.

На рис. 2.8 представлен план ускорений звена ABC. Ускорения точек A и B изображены на плане в масштабе μа отрезками π а' и π b', отложенными из общего полюса π.

Рис. 2.7. Ускорения точек A и B звена ABC Рис. 2.8. План ускорений звена ABC
       

 

Для определения ускорения точки C удобно использовать теорему подобия в плане ускорений: полные относительные ускорения точек жесткого звена образуют на плане ускорений фигуру подобную жесткому звену; при одинаковом направлении обхода этих фигур чередование букв при их вершинах повторяется. Из плана ускорений можно определить величину и направление углового ускорения звена.

.

Направление углового ускорения определим, если в точке B (рис. 2.7) приложим вектор nb' ускорения .

 

<== предыдущая лекция | следующая лекция ==>
Дифференцирования | ЛЕКЦИЯ 4. Две точки (Аx и А1) принадлежат двум звеньям – кулисе x-x и ползуну/1, и в данный момент времени совпадают (рис
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 955; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.