Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Устранимый разрыв

Точки разрыва функций

Второй замечательный предел

 

Число е было определено как

Можно доказать, что .

 

Определение 1. Точка а называется точкой устранимого разрыва функции y=f(x), если существует , но в т. а f(x) либо не определена, либо f(а)¹ .

Пример 1.   Рис.11

Так как , то т. x=0 является для этой функции точкой устранимого разрыва.

Замечание 1. В точке а устранимого разрыва функции f(x) можно переопределить (или доопределить) так, чтобы она стала непрерывной, положив ее равной в т. а значению предела f(x) при x®а. В примере 1 достаточно положить f(0)=1 и f(x) станет непрерывной в т. x=0 (и на всей числовой прямой в силу теоремы п.1.4.3.14.).

 

<== предыдущая лекция | следующая лекция ==>
Первый замечательный предел | Разрыв второго рода
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 326; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.