КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Интегралы с бесконечными пределами
Пусть функция непрерывна при любом . Рассмотрим определённый интеграл с переменным верхним пределом . Предположим, что при функция имеет конечный предел; этот предел называется сходящимся несобственным интегралом от функции по промежутку и обозначается . Если же этот предел не существует или равен бесконечности, то несобственный интеграл называется расходящимся.
Геометрически несобственный интеграл от неотрицательной функции выражает площадь бесконечной криволинейной трапеции, ограниченной сверху графиком функции , слева - прямой , снизу - осью (В случае сходящегося интеграла эта площадь является конечной, в случае расходящегося - бесконечной) (Рис.20.1.). Если - первообразная для , то = = = , где = . и несобственный интеграл с обоими бесконечными пределам и несобственный интеграл с обоими бесконечными пределами +, где с - любая точка из интервала . Пример 1. = = = . Пример 2. = sin- sin 0 = sin. Этот предел не существует, следовательно, интеграл расходится.
Пример 3. + . Этот интеграл расходится, так как = == = = . С помощью следующих двух теорем можно исследовать вопрос о сходимости некоторых несобственных интегралов.
Теорема 1. Если при выполнены неравенства и сходится, то сходится и , причём £ ; если же расходится, то расходится и интеграл . Теорема 2. Если в промежутке функция меняет знак и сходится, то сходится также .
Дата добавления: 2014-01-07; Просмотров: 434; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |