КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Стали и сплавы со специальными свойствами
В современном автомобилестроении широко используютстали и сплавы, обладающие специальными свойствами: заданной проводимостью, низким удельным электросопротивлением, заданным температурным коэффициентом линейного расширения, полупроводниковыми и магнитными свойствами, способностью восстанавливать заданную форму изделия. Металлические проводниковые материалы. Широкое применение в автомобилях нашли металлы и сплавы высокой проводимости: серебро, медь, бронза и латунь. Серебро применяется для изготовления неокисляющихся проводников электрических контактов ответственных приборов. Специальными методами из серебра изготовляют покрытия на меди, латуни и непроводящих материалах: керамике, стекле, полимерах. Медь имеет широкое применение благодаря высокой проводимости, хорошим механическим характеристикам, более низкой по сравнению с серебром стоимости. Для защиты меди от окисления токоведущие элементы серебрят. В отожженном виде медь (марки ММ) имеет более высокую проводимость, в нагартованном (марки МТ) — высокую прочность. Мягкую медь (марки МО, Ml) применяют для изготовления жил обмоточных проводов. Медь марок М2, МЗ и М4 используют преимущественно для получения сплавов. В изделиях с повышенными механическими характеристиками используют латуни, кадмиевые и бериллиевые бронзы. Кадмиевую бронзу используют для изготовления троллей, скользящих контактов, мембран. Латуни применяют для изготовления различных токопроводящих деталей. Алюминий характеризуется достаточно высокой электропроводностью в сочетании с пластичностью и малой плотностью. Он более распространен в природе, чем медь, более стоек к коррозии. Промышленность выпускает сверхчистый алюминий марок А 999 и А 995, алюминий высокой чистоты марок А 99 и А 95. Их используют для изготовления электролитических конденсаторов, защитных кабельных оболочек. Из алюминия технических марок А 85 и А 7 изготавливают кабели, токопроводящие шины. Для соединения алюминиевых проводов применяют специальные припои, разрушающие в месте контакта пленку окислов с высоким электрическим сопротивлением. В ряде случаев используют биметаллическую проволоку, состоящую из стальной сердцевины и медной или алюминиевой оболочки. Покрытие наносят гальваническим способом или плакированием. Полупроводниковые материалы представляют собой класс материалов с электронной проводимостью, характеризующихся большей удельной электропроводностью, чем металлы, но меньшей, чем диэлектрики. Для получения полупроводников с заданными удельными электросопротивлением и типом проводимости осуществляют их легирование. Согласно химической классификации полупроводниковых материалов, их разделяют на два класса: — простые полупроводники, имеющие в своем составе один элемент (В, С, Si, Ge, Sn, P, As, Sb, S, Se,Те, I); — сложные полупроводники, являющиеся химическими соединениями и сплавами. Германий (Ge) является одним из наиболее широко применяемых полупроводников, его используют для изготовления выпрямителей, транзисторов, диодов и др. Полупроводниковые приборы на основе кремния работоспособны при более высоких температурах (120— 150°С), чем германиевые (70—85°С). Нелегированный кремний применяют при создании силовых выпрямителей, стабилизаторов напряжения и др. Также достаточно широко используются в электронной промышленности селен, теллур и их соединения. Магнитные стали и сплавы характеризуются магнитной проницаемостью, коэрцитивной силой и остаточной индукцией. В зависимости от значений этих величин магнитные материалы разделяют на: - магнитно-мягкие материалы (ферромагнетики), к - магнитно-твердые стали и сплавы — это высоко Электротехническое железо (марки Э, ЭА, ЭАА) содержит менее 0,04 % С применяется для сердечников, полюсных наконечников электромагнитов и др. Электротехническая сталь содержит менее 0,05 % С и кремний, сильно увеличивающий магнитную проницаемость. По содержанию кремния эту сталь делят на четыре группы: - с 1 % Si - марки Э11, Э12, Э13; - с 2 % Si — марки Э21, Э22; - с 3 % Si - марки Э31, Э32; - с 4 % Si — марки Э41, Э48. Вторая цифра (1—8) характеризует уровень электротехнических свойств. Железоникелевые сплавы (пермаллои) содержат 45— 80 % Ni, их дополнительно легируют Cr, Si, Mo. Магнитная проницаемость этих сплавов очень высокая. Применяют пермаллои в аппаратуре, работающей в слабых магнитных полях (телефон, радио). Ферриты — материалы, получаемые спеканием смеси порошков ферромагнитной окиси железа Fe2O3 и оксидов двухвалентных металлов (ZnO, NiO, MgO и др.). У ферритов очень высокое удельное электросопротивление, что определяет их применение в устройствах, работающих в области высоких и сверхвысоких частот. Развитие электроники, вычислительной техники, радиотехники обусловило необходимость разработки магнитных материалов со специальными магнитными свойствами. В электронной вычислительной технике и автоматических устройствах широко применяют магнитные материалы с прямоугольной петлей гистерезиса (ППГ). Основными требованиями к материалам с ППГ являются: заданное значение коэрцитивной силы и минимальное время перемагничивания. В малогабаритных ЭВМ и оперативных запоминающих устройствах используют тонкие ферромагнитные пленки. Характерная особенность этих материалов — незначительное время перемагничивания (от десятых долей до нескольких наносекунд). В качестве носителей магнитной записи используют ленты, диски, барабаны и т. д. Магнитную запись производят на специальном материале, состоящем из подложки и слоя магнитного вещества на органическом связующем. В качестве подложки используют поливинилхлорид, лавсан, полиамид. Магнитный материал — это обычно высокодисперсные оксиды Fe2Cr203, сплавы Fe-Co. Слой магнитного материала наносят электролитическим осаждением, распылением в вакууме. Сплавы с высоким электрическим сопротивлением применяются для изготовления электронагревателей и элементов сопротивлений (резисторов) и реостатов. Железохромалюминиевые (Х13Ю4) и никелевые (Х20Н80— нихром) сплавы для электронагревателей обладают высокой жаростойкостью, высоким электрическим сопротивлением, удовлетворительной пластичностью в холодном состоянии. Стойкость нагревателей из железохромалюминиевых сплавов выше, чем у нихромов. Сплавы применяют для бытовых приборов и для промышленных печей. Стали и сплавы с особыми упругими свойствами. В машиностроении широкое применение получили материалы, обладающие высокими пределом упругости и пределом выносливости. Эти свойства материалов обеспечиваются их термической обработкой — закалкой и последующим отпуском. Среднеуглеродистые стали с упругими свойствами применяют для изготовления пружин, рессор общего назначения. Для изготовления упругих элементов в приборостроении применяют сплавы с особыми упругими свойствами. Пружины, мембраны, сильфоны — изготовляют из сплавов 42НХТЮ, 17ХНГТ, 68НХВКТЮ, 95НЛ и др. Эти сплавы в закаленном состоянии достаточно технологичны в переработке, а после старения приобретают высокие упругость и прочность. Для изготовления упругих элементов особого назначения применяют бериллиевые бронзы (БрБ2) с малыми неупругими эффектами при больших упругих деформациях. Они упрочняются термической обработкой. Бериллиевые бронзы дополнительно легируют титаном и никелем, микролегируют бором (до 0,1 %), магнием (до 0,1 %). Для защиты упругих элементов от воздействия коррозионноактивных сред применяют их оксидирование, кадмирование, никелирование. Для изготовления упругих элементов, работающих под воздействием электрического тока, применяют сплавы на никелевой и кобальтовой основе: 05НЛМ, ЭП431. Сплавы с заданным коэффициентом теплового расширения. Они содержат большое количество никеля. Сплав 36Н — инвар, почти не расширяется при температурах от минус 60 до + 100°С, обладает хорошими служебными характеристиками, технологичен и коррозионностоек. Легированием инвара кобальтом получают суперинвар. Эти сплавы применяют для изготовления деталей приборов, требующих постоянных размеров в интервале климатических изменений температур. Для соединения металлических деталей приборов со стеклянными применяют сплавы Fe-Ni, легированные кобальтом или медью. Для соединений с термостойким стеклом применяют сплав 29НК (29 % Ni, 18 % Со) — ковар. Для нетермостойких стекол применяют сплав 48Н — платинит. В приборостроении широко используют материалы, состоящие из двух слоев материалов с различными температурными коэффициентами литейного (объемного) расширения — термобиметаллы (сплавы марок 19НХ, 20НТ, 24НХ, 27НМ, 46Н и др. Термобиметаллы применяют для изготовления тепловых реле, конденсаторов, сигнальных пожарных устройств. Сплавы с эффектом памяти. « Эффект памяти механической формы» заключается в свойстве пластически деформированного при повышенных температурах изделия, а затем деформированного при данной температуре до потери первоначальной формы, восстанавливать её при повторном нагреве. « Эффект памяти механической формы» характерен для рядя сплавов: Ti-Ni, Cu-Zn и др. Наиболее типичным представителем таких материалов является сплав Ti-Ni (нитинол). Сплавы, реализующие эффект памяти, используют для изготовления самораскрывающихся антенн космических аппаратов, в устройствах пожаротушения и др.
Контрольные вопросы 1. Каким образом классифицируют стали? 2. Как подразделяются стали по своему назначению? 3. Какие существуют группы углеродистых сталей? 4. С какой целью осуществляется легирование сталей 5. Какие стали относятся к группе инструментальных Глава 3. ЦВЕТНЫЕ МЕТАЛЛЫ И СПЛАВЫ Многие цветные металлы и их сплавы обладают рядом ценных свойств: хорошей пластичностью, вязкостью, высокой электро- и теплопроводностью, коррозионной стойкостью и другими достоинствами. Благодаря этим качествам цветные металлы и их сплавы занимают важное место среди конструкционных материалов. Из цветных металлов в автомобилестроении в чистом виде и в виде сплавов широко используются алюминий, медь, свинец, олово, магний, цинк, титан.
Дата добавления: 2014-01-07; Просмотров: 3832; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |